
Advanced Progamming Languages Lecture 2
CS 6110 Spring 2015 Fri. Jan. 23, 2015

Lecture 2

Reading- Thompson Chapter 2.1 -2.5 (pp 29-42)

Topics

1. Finish survey of course topics

2. Programming language classification: functional, imperative, pure, impure, object ori-
ented

Simplest to study mathematically is functional programming, it is a core of other
languages, well related to math.

3. Functions have been key in mathematics since the 1700’s.

From the study of motion, the idea of a function emerged. By 1673 Leibniz (ances-
tor of most computer scientists) used the terms “function”, “constant”, “variable”,
“parameter”.

Euler 1755- New definition of function: “If some quantities depend on others in such
a way as to undergo variation when the latter are varied, then the former are called
functions of the latter”

Dirichlet 1827 defines common notations

y = f(x)
y = x2,

but not precise, Bourbaki uses x 7→ x2

4. The move toward set theory in 1908 led to an effort to code all mathematical concepts as
sets. Students are probably familiar with functions as single valued relations, relation
R(x, y) is a set of ordered pairs, a subset of A×B

For exmample y = x2 on numbers {< 0, 0 >,< 1, 1 >,< 2, 4 >,< 3, 0 >,}, if
< a, b >,< a, b′ > appear, then b = b′.

5. We don’t use this definition, we want a function to be a rule of correspondence given
by an algorithm.

Church 1932 A set of postulates for the foundations of
mathematics[1].

1940 He captured this with his Lambda Calculus. [2]

1

We define the pure λ-calculus as a starting point. Its syntax is given as a collection (type)
of λ-terms, inductively defined. There are these variants.

Definition 1 Thompson book Def 2.1
There are 3 kinds of λ-expressions:

• Variables v0, v1, v2, ...

• Applications (e1, e2) for e1, e2 λ-expressions

• Abstractions (λx.e) for x a var, e a λ-expression

Definition 21 λ-terms

• Variables x1, x2, ...

• (λxM)

• (NM)

Syntactic conventions for abbreviations:

C1. Application binds more tightly than abstraction.

λx.xy means (λx.(xy)) not ((λx.x)y)

C2. Application associates to the left.

xyz means ((xy)z)

C3. λx1.λx2.λx3.e means (λx1.(λx2.(λx3.e)))

Note there are variations in the literature that we will read.

Definition 3 From Stenlund Combinators λ-Terms and Proof Theory, D. Reidel 1972, p.11,
Ch 1 §4

• A variable

• (Possibly constants)

• (a, b) application, write a1a2...an for (..((a1a2)a3)...)

• λx.a

Since there is so much variation and chance for ambiguity, we introduce an unambiguous
definition using abstract syntax, a key idea from early work that led to Lisp. It’s from one
of the seminal papers. This is by John McCarthy (1963) [3].

1Definition 2 comes from the “Barendregt Bible”, The Lambda Calculus, its Syntax and Semantics, N-H
1981

2

Definition 4 Abstract syntax for the Lambda Calculus - λ-terms

• Variables x, y, z, x1, y1, z1, ...

• Abstraction λ(x.t) t is a λ-term, x is a variable

• Application ap(f ; a) f, a λ-terms

The identity function Applying the identity function to itself
Thompson (λx.x) (λx.x)(λx.x)
Barendregt (λx.x) (λxx)(λxx)
Stenlund λx.x (λx.xλx.x)
Abstract λ(x.x) ap(λ(x.x);λ(x.x))

These definitions are all inductive. Thompson does not mention this. Barendregt mentions
it in a footnote. Stenlund is explicit. It is clear in the abstract syntax based on defining
other mathematical expressions, such as arithmetic expressions: exp

• Variables x, y, z, x1, y1, z1, ...

• Constants 0, 1

• add(exp, exp)

• mult(exp, exp)

0, 1, add(0, 0), mult(0, 0), mult(0, 1), ..., add(add(0, 0), add(0, 1)), ...

In the Coq and Nuprl programming languages, types can be defined inductively. The Coq
type for the lambda calculus is this:

inductive term: Type =
|var (v : var)

|lam (v : var)(t : term)

|ap (t : term)(t : term)

Subterms

Free Variables

Free(x) = x

Free(λ(x.b)) = Free(b)− {x}

Free(ap(f ; a)) = Free(f) ∪ Free(a)

Equality

α-Equality

Substitution e[a/x]
à la Barendregt: with variable convention: all bound variables are chosen different from the
free variables.

3

x[a/x] = a

y[a/x] = y if x 6= y

λ(y.b)[a/x] = λ(y.b[a/x])

ap(f ; t)[a/x] = ap(f [a/x]; t[a/x])

See lecture notes from Lecture 2, 2010 for an account of “safe substitution” (2.2) that allows
us to safely substitute open terms. Why is this important?

In normal use of λ-terms and in programming languages, open terms have meaning with
reference to some context or environment. We don’t want to break that link by having the
binding operator, λ(x.), capture the external link.

Typically in mathematics, say calculus, we can’t apply a function to itself! So (x x) as a
term and (λx.x λx.x) are not common.

Here is a simple λ-term that does not appear in ordinary mathematics and might seem
crazy:

λ(x.ap(x;x)) also written as λx.xx

Even more strange from CS6110 lecture notes:

Ω = ap(λ(x.ap(x;x));λ(x.ap(x;x))
Ω = (λx.xx)(λx.xx)

References

[1] Alonzo Church. A set of postulates for the foundation of logic. Annals of mathematics,
second series, 33:346–366, 1932.

[2] Alonzo Church. A formulation of the simple theory of types. The Journal of Symbolic
Logic, 5:55–68, 1940.

[3] J. McCarthy. A basis for a mathematical theory of computation. In P. Braffort and
D. Hirschberg, editors, Computer Programming and Formal Systems, pages 33–70. North-
Holland, Amsterdam, 1963.

4

