
Advanced Progamming Languages Lecture 16
CS 6110 Spring 2015 Fri. Feb. 27, 2015

Lecture 16

Topics

1. Review of applied lambda calculus – sample design issues.

2. Explaining the Kleene Normal Form theorem as a “universal machine”, other abstract
concepts about computable function formalisms used in mathematics – s-m-n, recursion
theorems.

3. Indexing as an abstract approach to programming languages.

4. Chuch-Rosser theorem – first look (See textbook, page 163)

1. Applied Lambda Calculus

Dr. Rahli introduced us to applied λ-calculi having numbers, addition, and the let
operator for call-by-value application. He was making design choices for pedagogical
purposes. Eventually we will see a “full-fledged” applied lambda calculus when we
study constructive type theory.

His version had numbers, addition and let x = a in b, the call by value operator.
Later we will add many more kinds of primitive data and operations on it. We know
from Kleene that numbers are enough along with elementary functions, and the least
number operator.

Another way to write call-by-value is to have an operator that looks like cbv(f ; a) to
complement ap(f ; a). We could also write this as let(a;x.b). These are design choices.

2. Kleene Normal Form Theorem and its consequences

How does the normal form theorem work? Consider

ϕ(x1, ..., xn) = U(µy.Tn(e, x1, ..., xn, y)).

The number e is a numerical code for the function ϕ being defined by general recursion.
It arises from “arithmetizing” (or gödelizing) the equations. Kleene does this in great
deatail. It is an implementation, taking almost 20 pages in his 550 page book.

The number y codes up a computation. The T -predicate says in detail what a com-
putation of ϕ is, step-by-step and checks that the number y really is the code of a
computation.

1



We could code up an abstract machine for a λ-calculus with numbers, a conditional (if
x = y then else ), and a fix operator as a general recursive function. We would
need the termination guarantee. We could then treat ϕ(x1, ..., xn) as a λ definable
function.

We get a version of this Normal Form Theorem also for the partial recursive functions.
It is written with an equality similar to Howe’s computational equality, '.

Theorem 19 ϕ(x1, ..., xn) ' U(µy.Tn(e, x1, ..., xn, y)) and ∃y. T (e, x1, ..., xn, y) is the
assertion that ϕ(x1, ..., xn) halts.

Kleene’s famous recursion theorem is this:

{e}(x1, ..., xn) ' ψ(e, x1, ..., xn).

This says that we can “solve” any recursion of the form z(x1, ..., xn) ' ψ(z, x1, ..., xn)
for the numerical value z.

3. Abstract approach to programming languages

This numerical indexing idea led Rogers[4] to a very elegant and general account of
recursive function theory. He defined an acceptable indexing of the partial recursive
functions as a mapping ϕ : N→ PR satisfying exactly two conditions.

1. There is a universal machine in ϕ, i.e. for any pairing function (computable)
p : N× N→ N that is 1-1 onto, there is a m ∈ N such that ϕm(p(x, y)) ' ϕx(y)

2. There is a total recursive function s such that ϕs(i,m)(n) ' ϕi(m,n) for all i,m, n.
(This is called the s-m-n condition.)

In the abstract approach to programming, it is possible to define computational com-
plexity measures in a very general way. Here is how Manuel Blum did it in his 1967
Journal of the ACM article.[2]

Associate with every ϕi a complexity function Φi such that

B1. ϕi(x) ↓ iff Φi(x) ↓ and

B2. Require a total recursive function M(i, n,m) such that

M(i, n,m) =

{
1 if Φi(n) = m

0 otherwise

It is possible to show that there is a function β on indices such that Φi = ϕβ(i).

Blum’s best known theorem from this paper is called the speed-up theorem. It says
that there are computable functions with no best (or even good) algorithms.

2



Blum Speed-up Theorem Given any general recursive function r : N × N → N,
we can find a 0, 1 valued recursive function f such that for every index i for f there
is another index j for f such that Φi(n) > r(n,Φj(n)) for almost all n.

Other well known results in this subject can be found in the survey article by Hartmanis
and Hopcroft from 1971[3]. The well known Borodin Gap Theorem is covered in this
article. Allan Borodin is basically the first PhD graduate from the Cornell Computer
Science department. His result was recently formalized[1]. Later in the course we will
examine how computational complexity can be expressed in type theory, and we will
mention the famous results on probabilistically checkable proofs (PCP).

References

[1] Andrea Asperti. A formal proof of Borodin-Trakhtenbrot’s Gap theorem. In Third
International Conference, CPP 2013, pages 163–177. Melbourne, Australia, December
2013.

[2] M. Blum. A machine independent theory of computational complexity. Journal of the
Association for Computing Machinery, 14:322–336, 1967.

[3] J. Hartmanis and J. E. Hopcroft. An overview of the theory of computational complexity.
Journal of the Association for Computing Machinery, 18(3):444–475, July 1971.

[4] Hartley Rogers, Jr. Theory of Recursive Functions and Effective Computability. McGraw-
Hill Book Company, New York, 1967.

3


