
Advanced Progamming Languages Lecture 13
CS 6110 Spring 2015 Fri. Feb. 20, 2015

Lecture 13

Midterm reminder Friday March 6 – 2 weeks from today

1 Overview

Lecture 10 by Abhishek Andand was on the Coq system and the Coq programming language,
CoqPL. Then Dr. Rahli devoted Lectures 11 and 12 (interrupted by President’s Day) to
the topic of evaluating lambda terms, and on Monday February 23 he will finish the topic
in Lecture 14. His lecture will prepare you to study the 2003 BRICS article by Danvy
and his colleagues on implementing Abstract State Machines for the lambda calculus if you
wish to investigate this topic more deeply. We will have taken you from the theory of the
lambda calculus and combinators to their implementation in modern functional programming
languages such as OCaml and SML (Standard ML). That series of lectures essentially finishes
our account of the untyped Lambda Calculus and Combinators by “bringing it down to earth”
and allowing those who like to learn by implementing a chance to write your own pure lambda
calculus state machine.

I want to use today’s lecture to tie together the topics of Lectures 10, 11, 12, and 14 and put
them in context so that you can see the connections to the rest of the course and its main
themes. Doing this will also help prepare you for Lecture 14. I also expect that doing this
will help you with Problem Set 2 and the questions about primitive recursion. The structure
of this lecture is partly review and context.

We will recall the four models of computing that we have studied: the Lambda Calculus,
Combinators, Primitive Recursion, and Kleene’s Partial Recursive Functions (using Primitive
Recursion and the µ-operator (least number operator)). We will classify these models into
the Turing complete models and the subrecursive models. That classification is important
for this version of the course since most offerings of CS6110 do not devote much time to
subrecursive languages. The existence of CoqPL has changed that. Moreover, I always cover
the topic since subrecursive languages provide a very nice connection to Theory A, and I am
keen to foster connections between these two basic branches of computing theory. Indeed,
my dream for years has been to provide a type theory foundation for computer science that
will unify these fundamental areas of CS. I am far from alone in this hope. Professor Kozen
is a living example of this unity.

In addition, this lecture will be our first effort to contrast methods of defining programming
languages. The topic is item 4 in the list below, and in item 5 we make the contrast to the
semantic methods for the lambda calculus. It is already clear that the methods used for

1



the Lambda Calculus are quite different than those for the primitive recursive and partial
recursive functions. This difference is fundamental. The Lambda Calculus semantics involves
the use of a metalanguage which is very close to the language being defined. The primitive
and partial recursive function definitions do not use this methodology.

The metalanguage approach is very manifest in the programming language Lisp and efforts
to provide a firm formal semantics for that language. It gives Lisp the power tointernally
define new languages. This is done using the QUOTE operator to talk about Lisp syntax
in the language itself. The Lisp idea is similar to mechanisms used in natural languages to
talk about themselves.

Quoting and the use of metalanguage are closely related. I think that there is more research
to be done on understanding the importance of the differences and the issues with the notion
of a formal metalanguage. These are significant and deep ideas in my view, and they are not
fully understood. This lack of a complete understanding is due to the fact that we can find
ways to avoid this approach or minimize it. The method used for partial recursive functions
à la Kleene is one.

To illuminate this important and subtle point, I want to also bring into the story in more
detail the efforts of Herbrand and Gödel to define the notion of general recursive functions or
Herbrand-Gödel recursive functions. I make brief remarks about this now and then elaborate
in Lecture 16 next Wednesday, February 25. Next week we will examine small fragments
of the basic articles on this topic by Gödel and Kleene. Their ideas are easy to state and
remarkably insightful. They also connect to the early history of the effort to understand the
computable functions. In due course we might look at the method that the logicians use to
reduce reflection and metalanguage to the idea used by Gödel, it is called arithmetization or
Gödel numbering.

Already the lectures of Dr. Rahli have revealed the critical nature of the metalanguage. We
see how that concept is used at a high level and then carried all the way down to the code in
the BRICS implementations. The fact that the metalanguage resembles the object language,
the Lambda Calculus, is already on the face of it, fascinating to those who like to think about
the basic mechanisms of human language.

2 Lecture Topics

1. The PL models so far:
λ-calculus (Universal, i.e Turing complete)1

Combinators (Universal)
Primitive recursion and CoqPL (Subrecursive languages)
Partial recursive functions (Turing complete)

µ-operator and Primitive Recursion
Herbrand/Gödel recursive 2

1Turing was careful to allow oracles, that is part of some models explicitly. What about for the λ-calculus?
Add a function term f with oracular reductions. Have non-deterministic combinator been studied? Yes! α

2



2. Functional PL mechanisms so far:

Howe’s equality
Environments, closures
Continuations (tail recursion)
(Path to compilation)
Yet to come – defunctionalization, Abstract State Machines
“Compiler Theory” – the “logic of compilers”

3. Relating models.

All can be compiled to Turing machines or other universal machine models: RAM,
RASP, G3 machine, etc. If they can simulate a Turing machine, they are universal.
We should also require oracles. This has become key in Nuprl’s event logic. We also
call these models Turing complete.

4. Methods of definition.

Primitive and Partial Recursive defined using inductively defined classes of functions
and partial functions vs. λ-terms. This will be a separate section.

Recursive functions in mathematics, refining this idea led to general recursive functions
or Herbrand/Gödel recursive functions, partly captured in CoqPL. Primitive recursion
is natural, but see PS2 on the Fibonacci function.

Primitive recursive functions are tail recursive.

5. The lambda calculus theory requires a meta language as we see in Dr. Rahli’s lectures.
This seems circular to use a lambda calculus implementation to define the lambda
calculus evaluator. Is this whole method sound? Or are we just “kicking out the
chair” after we have created a compiler for our language by standing on it? What is
the logic behind compilers and interpreters?

6. Steps toward the BRICS evaluators (in SML)

3 Methods of defining computable functions.

The first glimpse of the notion of a universal class of computable functions came from the
study of recursive functions in number theory. It was common since at least Gauss to use
recursive functions and induction to state and prove results in number theory. Indeed there
are efforts to state the results of number theory very formally using recursive functions, many
of which are primitive recursive, all of which are Herbrand-Gödel recursive.

Recursive Functions by Rozsa Peter, 1967 from her work starting in 1932.

+ β.
2This example is very special. It appears to provide all the total computable functions without introducing

partial functions. Can this be? Or must the language be subrecursive in some way?

3



Herbrand 1932
Herbrand Gödel 1934

}
General recursive functions

Kleene 1936, wrote key papers relating general recursive functions to his partial recur-
sive functions defined in lecture. We will look at excerpts of one of these along with
his notes with Rosser on Gödel’s lectures.

The λ-calculus ideas came from Church in 1932 as well, revisited in 1940.

Turing 1937 – Turing machines [Gödel said: this definition of computability is absolute,
perhaps the only absolute idea in logic. It is not entirely clear how to be precise
about this notion of absoluteness. It seems to suggest something foundational that
transcends any particular formalism. This informal insight might be key to why a
modern constructive type theory of partial computable functions, might be an adequate
foundation for both mathematics and computer science. This is one of my favorite ideas
and themes.]

1937 – PhD compilation of λ-calculus to Turing machines.

Markov algorithms 1947 – other late models of computersl RAMS, RASP, etc.

The recursive function style is mathematical or denotational, based on classes of functions
and methods of recursive definition. The use of recursion along with very simple operations
such as composition and projection seems to be the core of computation. This idea gradually
arose a logicians studied the forms of recursive definition.

Primitive (singly recursive)

Double recursive, course-of-values, simultaneous

n-recursive h(p + 1, n + 1, a) = h(p, h(p + 1, n, a), a) See Ackermann example of a
doubly recursive function.

Higher-type recursion on functionals will be discarded later. They are used in Gödel’s
system T – 1958

Recursive Number theory – Goodstein 1957 shows how to formulate results in number
theory, such as the fundamental theorem of arithmetic, using recursive functions. He
later did elements of analysis this way (Recursive Analysis).

What is the essence of this method?

Closing a class of basic functions under operations. The base functions are all obviously
computable, and recursion seems to be sufficient to obtain all of the computable functions
used in mathematics. No “syntax” or “metalanguage” is needed, just mathematical oper-
ations cast as functions and the notion of an inductive class of functions using computable
functionals, i.e. functions taking functions as inputs and outputs.

We can experience these ideas by studying the class of primitive recursive functions and
looking at how they can be extended by defining the Ackermann function and other “general
forms” of recursive definition. Herbrand suggested allowing any recursive definition as long
as it defines a function in some constructive sense.

4



4 Steps toward the BRICS evaluators

A key step in Dr. Rahli’s explanation of lambda calculus evaluators is transforming the nat-
ural recursive evaluator to a tail recursive version. To illustrate this in a simple setting, let’s
notice that all primitive recursive functions are tail recursive. We show where the terminol-
ogy comes from by implementing these recursions using while loops. This implementation
shows what a stack frame is and how they are collapsed in implementing primitive recursion
with a while loop. Consider the following simple example.{
f(0, y) = a(y)
f(S(n), y) = h(n, y, f(n, y))

Consider this computation:

f(3, 5) = h(2, 5, f(2, 5))
f(2, 5) = h(1, 5, f(1, 5))
f(1, 5) = h(0, 5, f(0, 5))
f(0, 5) = a(5)

 These are stack frames

We can see how destructive updates can collapse the stack frames – using “mutable vari-
ables”, i.e. imperative programs. We study their semantics later in the course.

i := 0; f := a(5)
while (i < n) do

f := h(i, 5, f)
i := i+ 1

od {f(i, 5) = h(i− 1, 5, f(i− 1, 5))}
{i = n}
{f(n, 5) = h(n− 1, y, f(n− 1, y))}

The while loop does tail recursion.

Exercise: Write the while loop as a recursive function. (To be assigned in PS3.)

Steps toward understanding the BRICS (Basic Research in CS, Aarhus, Denmark) paper
on the course web page: A Functional Correspondence Between Evaluators and Abstract
Machines. Ager, Bienacki, Danvy, Midtgaard, 2003.

They write a sequence of evaluators in SML. Eval0 produces Krivine’s Abstract State ma-
chine. It uses λ-terms coded with deBruijn λ-terms. The bound variables are given by their
off-set numbers from the binding λ. For example:

λx.λy.x is λλ2
The S-combinator λxλyλz.xz(yz) is λλλ31(21)
λz.(λy.y(λx.x))(λx.zx) is λ(λ1)(λ1)(λ21)

You only need to know that bound variables are numbers. We won’t use this notation.
Substitution is nasty, need to renumber.

5


	Overview
	Lecture Topics
	Methods of defining computable functions.
	Steps toward the BRICS evaluators

