
Advanced Progamming Languages Lecture 3
CS 6110 Spring 2015 Mon. Jan. 26, 2015

Lecture 3

Topics

1. Brief review of λ-calculus sytanx.
Varieties of syntax: Thompson, Barendregt, Stenlund, Abstract syntax (also Coq from
Software foundations, designed for the typed lambda calculus.)

2. Discuss capture of open terms by bound variables, what it means, why it is dangerous,
Barendregt’s variable convention.

3. Values versus open terms.

4. Safe substitution, read CS6110 Lect. 2, 2012.

5. Lambda (equality) theory from Barendregt, syntactic equality, α-equality, β-equality.

See CS6110 Spring 2012 Lecture 2 here
See Software Foundations on the Lambda Calculus here

1. Review

We left off with the convention and the β-reduction rule.

Variable Convention: In an application of a function, we assume that the
binding variables of the function expression are disjoint from the free variables of
the argument.

ap(λ(x.λ(y...b(x, y, ...)); a))

Substitution: b[a/x] is simple in this case, we gave the definition. It’s in the
notes and Thompson.

β-Reduction (lazy evaluation): ap(λ(x.b); a) ↓ b[a/x]

Example- ap(λ(x.λ(y.x); a))) ↓ λ(y.a)

The output is a constant function.

OCaml version- (funx→ (fun y → x))a ;;

(funx→ a)

2. Why do we need the variable convention? Because of capture. Applying λ(x.λ(y.x))
to a constant, say 0, gives

ap(λ(x.λ(y.x)); 0) ↓ λ(y.0),

a constant function. Capture of y produces the identity function.

1

http://www.cs.cornell.edu/courses/CS6110/2010sp/lectures/lec02.pdf
http://www.cis.upenn.edu/~bcpierce/sf/current/Stlc.html


ap(λ(x.λ(y.x)); z) ↓ λ(y.z)

This is an “arbitrary constant function”.

What is happening in the general case? Capture example:

ap(λ(x.λ(y.b(x, y))); a(y)) ↓ λ(y.b(a(y), y))

There might be a “meaning for y” in a context, say a(y) but then λ(y.b(x, a(y)))
the external reference is broken. This could happen inside an abstraction.

ap(λ(y.ap(λ(x.λ(y.b(x, y))); a(y))); c) ↓
ap(λ(x.λ(y.b(x, y))); a(c)) ↓

λ(y.b(a(c), y))

Doing the reasoning first, we get:

ap(λ(y.ap(λ(x.λ(z.b(x, z)))); a(y)); c) ↓
ap(λ(y.λ(z.b(a(y), z))); c) ↓

λ(z.b(a(c), z))

We note that λ(z.b(a(c), z)) =α λ(y.b(a(c), y)).

The =α means equal up to renaming of bound variables.

What happens if we first do the inner λ(x. ) application and fail to rename the
inner λ(y. )?

3. Another way to understand the λ-calculus is to understand what the values are, the
data or the mathematical objects. What are they so far?

Is x a value?

Is λ a value?

Is λ(x.x) a value? Is λ(x.λ(y.x))?

Is λ(x.ap(λ(y.x);x))? Is λ(x.λ(y.x))?

Values are closed abstractions.

2


