Supplementary Lecture A

The Knaster–Tarski Theorem

Transfinite Ordinals

Everyone is familiar with the set $\omega = \{0, 1, 2, \ldots\}$ of finite ordinals, also known as the natural numbers. An essential mathematical tool is the induction principle on this set, which states that if a property is true of zero and is preserved by the successor operation, then it is true of all elements of ω.

In theoretical computer science, we often run into inductive definitions that take longer than ω to close, and it is useful to have an induction principle that applies to these objects. Cantor recognized the value of such a principle in his theory of infinite sets. Any modern account of the foundations of mathematics will include a chapter on ordinals and transfinite induction.

Unfortunately, a complete understanding of ordinals and transfinite induction is impossible outside the context of set theory, because many issues impact the very foundations of the subject. Here we only give a cursory account of the basic facts, tools, and techniques we need.
Set-Theoretic Definition of Ordinals

Ordinals are defined as certain sets of sets. The key facts we need about ordinals, succinctly stated, are:

(i) There are two kinds: **successors** and **limits**.

(ii) They are well ordered.

(iii) There are a lot of them.

(iv) We can do induction on them.

We explain each of these statements in more detail below.

A set C of sets is said to be **transitive** if $A \in C$ whenever $A \in B$ and $B \in C$. Equivalently, C is transitive if every element of C is a subset of C; that is, $C' \subseteq 2C$. Formally, an **ordinal** is defined to be a set A such that

- A is transitive; and
- all elements of A are transitive.

It follows that any element of an ordinal is an ordinal. We use $\alpha, \beta, \gamma, \ldots$ to refer to ordinals. The class of all ordinals is denoted Ord. It is not a set, but a proper class.

This neat but rather obscure definition of ordinals has some far-reaching consequences that are not at all obvious. For ordinals α, β, define $\alpha < \beta$ if $\alpha \in \beta$. The relation $<$ is a strict partial order. As usual, there is an associated nonstrict partial order \leq defined by $\alpha \leq \beta$ if $\alpha \in \beta$ or $\alpha = \beta$.

It follows from the axioms of set theory that the relation $<$ on ordinals is a linear order. That is, if α and β are any two ordinals, then either $\alpha < \beta$, $\alpha = \beta$, or $\alpha > \beta$. This is most easily proved by induction on the well-founded relation

$$(\alpha, \beta) \leq (\alpha', \beta') \iff \alpha \leq \alpha' \text{ and } \beta \leq \beta'.$$

Then every ordinal is equal to the set of all smaller ordinals (in the sense of $<$). The class of ordinals is well-founded in the sense that any nonempty set of ordinals has a least element.

If α is an ordinal, then so is $\alpha \cup \{\alpha\}$. The latter is called the **successor** of α and is denoted $\alpha + 1$. Also, if A is any set of ordinals, then $\bigcup A$ is an ordinal, and is the supremum of the ordinals in A under the relation \leq.

The smallest few ordinals are

- $0 \overset{\text{def}}{=} \emptyset$
- $1 \overset{\text{def}}{=} \{0\} = \{\emptyset\}$
- $2 \overset{\text{def}}{=} \{0, 1\} = \{\emptyset, \{\emptyset\}\}$
- $3 \overset{\text{def}}{=} \{0, 1, 2\} = \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}$
Pictorially,

\[
\begin{array}{cccc}
0 & 1 & 2 & 3 \\
\cdot & & & \\
\end{array}
\]

The first infinite ordinal is

\[\omega \overset{\text{def}}{=} \{0, 1, 2, 3, \ldots\}.\]

An ordinal is called a successor ordinal if it is of the form \(\alpha + 1\) for some ordinal \(\alpha\), otherwise it is called a limit ordinal. The smallest limit ordinal is 0 and the next smallest is \(\omega\). Of course, \(\omega + 1 = \omega \cup \{\omega\}\) is an ordinal, so it does not stop there.

The ordinals form a proper class, thus there can be no one-to-one function \(\text{Ord} \to A\) into a set \(A\). This is what we mean above by, “There are a lot of ordinals.” In practice, this comes up when we construct functions \(f : \text{Ord} \to A\) from \(\text{Ord}\) into a set \(A\) by induction. Such an \(f\), regarded as a collection of ordered pairs, is necessarily a class and not a set. We will always be able to conclude that there exist distinct ordinals \(\alpha, \beta\) with \(f(\alpha) = f(\beta)\).

Transfinite Induction

The transfinite induction principle is a method of establishing that a particular property is true of all ordinals (or of all elements of a class of objects indexed by ordinals). It states that in order to prove that the property is true of all ordinals, it suffices to show that the property is true of an arbitrary ordinal \(\alpha\) whenever it is true of all ordinals \(\beta < \alpha\). Proofs by transfinite induction typically contain two cases, one for successor ordinals and one for limit ordinals. The basis of the induction is often a special case of the case for limit ordinals, because \(0 = \emptyset\) is a limit ordinal; here the premise that the property is true of all ordinals \(\beta < \alpha\) is vacuously true.

The validity of this principle ultimately follows from the well-foundedness of the set containment relation \(\in\). This is an axiom of set theory.

Zorn’s Lemma and the Axiom of Choice

Related to the ordinals and transfinite induction are the axiom of choice and Zorn’s lemma.
The **axiom of choice** states that for every set \(A \) of nonempty sets, there exists a function \(f \) with domain \(A \) that picks an element out of each set in \(A \); that is, for every \(B \in A \), \(f(B) \in B \). Equivalently, any Cartesian product of nonempty sets is nonempty.

Zorn’s lemma states that every set of sets closed under unions of chains contains a \(\subseteq \)-maximal element. Here a chain is a family of sets linearly ordered by the inclusion relation \(\subseteq \), and to say that a set \(C \) of sets is closed under unions of chains means that if \(B \subseteq C \) and \(B \) is a chain, then \(\bigcup B \in C \). An element \(B \in C \) is \(\subseteq \)-maximal if it is not properly included in any \(B' \in C \).

The **well-ordering principle** states that every set is in one-to-one correspondence with some ordinal. A set is **countable** if it is either finite or in one-to-one correspondence with \(\omega \).

The axiom of choice, Zorn’s lemma, and the well-ordering principle are equivalent to one another and independent of Zermelo–Fraenkel (ZF) set theory in the sense that if ZF is consistent, then neither they nor their negations can be proven from the axioms of ZF.

Complete Lattices

A complete lattice is a set \(U \) with a distinguished partial ordering relation \(\leq \) defined on it (reflexive, antisymmetric, transitive) such that every subset of \(U \) has a supremum or least upper bound with respect to \(\leq \). That is, for every subset \(A \subseteq U \), there is an element \(\sup A \in U \) such that

(i) for all \(x \in A \), \(x \leq \sup A \) (\(\sup A \) is an upper bound for \(A \)), and

(ii) if \(x \leq y \) for all \(x \in A \), then \(\sup A \leq y \) (\(\sup A \) is the least upper bound).

It follows from (i) and (ii) that \(\sup A \) is unique. We abbreviate \(\sup\{x, y\} \) by \(x \lor y \).

Any complete lattice \(U \) has a maximum element \(\top \equaldef \sup U \) and a minimum element \(\bot \equaldef \sup \emptyset \). Also, every subset \(A \subseteq U \) has an infimum or greatest lower bound \(\inf A \equaldef \sup\{y \mid \forall z \in A \ y \leq z\} \). One can show (Miscellaneous Exercise 19) that \(\inf A \) is the unique element such that

(i) for all \(y \in A \), \(\inf A \leq y \) (\(\inf A \) is a lower bound for \(A \)), and

(ii) if \(x \leq y \) for all \(y \in A \), then \(x \leq \inf A \) (\(\inf A \) is the greatest lower bound).

A common example of a complete lattice is the powerset \(2^X \) of a set \(X \), or set of all subsets of \(X \), ordered by the subset relation \(\subseteq \). The supremum of a set \(\mathcal{C} \) of subsets of \(X \) is their union \(\bigcup \mathcal{C} \) and the infimum of \(\mathcal{C} \) is their intersection \(\bigcap \mathcal{C} \).
Monotone, Continuous, and Finitary Operators

An operator on a complete lattice \(U \) is a function \(\tau : U \to U \). Here we introduce some special properties of such operators such as monotonicity and closure and discuss some of their consequences. We culminate with a general theorem due to Knaster and Tarski concerning inductive definitions.

In the special case of set-theoretic complete lattices \(2^X \) ordered by set inclusion \(\subseteq \), we call such an operator a set operator.

An operator \(\tau \) is said to be monotone if it preserves \(\leq \):
\[
x \leq y \Rightarrow \tau(x) \leq \tau(y).
\]

A chain in \(U \) is a subset of \(U \) totally ordered by \(\leq \); that is, for every \(x \) and \(y \) in the chain, either \(x \leq y \) or \(y \leq x \). An operator \(\tau \) is said to be chain-continuous if for every chain \(A \),
\[
\tau(\sup A) = \sup_{x \in A} \tau(x).
\]

For set operators \(\tau : 2^X \to 2^X \), \(\tau \) is said to be finitary if its action on \(A \subseteq X \) depends only on finite subsets of \(A \) in the following sense:
\[
\tau(A) = \bigcup_{B \subseteq A, \ B \text{ finite}} \tau(B).
\]

A set operator is finitary iff it is chain-continuous (Miscellaneous Exercise 20), and every chain-continuous operator on any complete lattice is monotone, but not necessarily vice versa (Miscellaneous Exercise 21). In many applications involving set operators, the operators are finitary.

Example A.1 For a binary relation \(R \) on a set \(V \), define
\[
\tau(R) = \{(a, c) \mid \exists b \ (a, b), \ (b, c) \in R\}.
\]
The function \(\tau \) is a set operator on \(V^2 \); that is,
\[
\tau : 2^{V^2} \to 2^{V^2}.
\]
The operator \(\tau \) is finitary, because \(\tau(R) \) is determined by the action of \(\tau \) on two-element subsets of \(R \).

Prefixpoints and Fixpoints

A prefixpoint of an operator \(\tau \) on \(U \) is an element \(x \in U \) such that \(\tau(x) \leq x \). A fixpoint of \(\tau \) is an element \(x \in U \) such that \(\tau(x) = x \). Every operator on \(U \) has at least one prefixpoint, namely \(\sup U \). Monotone operators also have fixpoints, as we show below.

For set operators \(\tau : 2^X \to 2^X \), we often say that a subset \(A \subseteq X \) is closed under \(\tau \) if \(A \) is a prefixpoint of \(\tau \), that is, if \(\tau(A) \subseteq A \).
Excerpt from the document:

Example A.2

By definition, a binary relation R on a set V is transitive if $(a, c) \in R$ whenever $(a, b) \in R$ and $(b, c) \in R$. Equivalently, R is transitive iff it is closed under the finitary set operator τ defined in Example A.1.

Lemma A.3

The infimum of any set of prefixpoints of a monotone operator τ is a prefixpoint of τ.

Proof. Let A be any set of prefixpoints of τ. We wish to show that inf A is a prefixpoint of τ. For any $x \in A$, we have inf $A \leq x$, therefore

$$\tau(\text{inf } A) \leq \tau(x) \leq x,$$

because τ is monotone and x is a prefixpoint. Because $x \in A$ was arbitrary, $\tau(\text{inf } A) \leq \text{inf } A$.

Lemma A.4

Any monotone operator τ has a \leq-least fixpoint.

Proof. We show that $\tau^\dagger(\bot)$ is the least fixpoint of τ in U. By Lemma A.3, it is the least prefixpoint of τ. If it is a fixpoint, then it is the least one, because every fixpoint is a prefixpoint. But if it were not a fixpoint, then by monotonicity, $\tau(\tau^\dagger(\bot))$ would be a smaller prefixpoint, contradicting the fact that $\tau^\dagger(\bot)$ is the smallest.

Closure Operators

An operator σ on a complete lattice U is called a closure operator if it satisfies the following three properties.
The Knaster–Tarski Theorem

(i) The operator \(\sigma \) is monotone.

(ii) For all \(x, x \leq \sigma(x) \).

(iii) For all \(x, \sigma(\sigma(x)) = \sigma(x) \).

Because of clause (ii), fixpoints and prefixpoints coincide for closure operators. Thus an element is closed with respect to a closure operator \(\sigma \) iff it is a fixpoint of \(\sigma \). As shown in Lemma A.3, the set of closed elements of a closure operator forms a complete lattice.

Lemma A.5

For any monotone operator \(\tau \), the operator \(\tau^\dagger \) defined in (A.2) is a closure operator.

Proof. The operator \(\tau^\dagger \) is monotone, because

\[
x \leq y \implies PF_\tau(y) \subseteq PF_\tau(x) \implies \inf PF_\tau(x) \leq \inf PF_\tau(y),
\]

where \(PF_\tau(x) \) is the set defined in (A.1).

Property (ii) of closure operators follows directly from the definition of \(\tau^\dagger \). Finally, to show property (iii), because \(\tau^\dagger(x) \) is a prefixpoint of \(\tau \), it suffices to show that any prefixpoint of \(\tau \) is a fixpoint of \(\tau^\dagger \). But

\[
\tau(y) \leq y \iff y \in PF_\tau(y) \iff y = \inf PF_\tau(y) = \tau^\dagger(y).
\]

The Knaster–Tarski Theorem

The Knaster–Tarski theorem is a useful theorem describing how least fixpoints of monotone operators can be obtained either “from above,” as in
the proof of Lemma A.4, or “from below,” as a limit of a chain of elements defined by transfinite induction.

Let U be a complete lattice and let τ be a monotone operator on U. Let τ^\dagger be the associated closure operator defined in (A.2). We show how to attain $\tau^\dagger(x)$ starting from x and working up. The idea is to start with x and then apply τ repeatedly until achieving closure. In most applications, the operator τ is continuous, in which case this takes only ω iterations; but for monotone operators in general, it can take more.

Formally, we construct by transfinite induction a chain of elements $\tau^\alpha(x)$ indexed by ordinals α:

\[
\begin{align*}
\tau^{\alpha+1}(x) & \overset{\text{def}}{=} x \lor \tau(\tau^\alpha(x)) \\
\tau^{\lambda}(x) & \overset{\text{def}}{=} \sup_{\alpha<\lambda} \tau^\alpha(x), \quad \lambda \text{ a limit ordinal} \\
\tau^*(x) & \overset{\text{def}}{=} \sup_{\alpha \in \text{Ord}} \tau^\alpha(x).
\end{align*}
\]

The base case is included in the case for limit ordinals:

\[
\tau^0(x) = \bot.
\]

Intuitively, $\tau^\alpha(x)$ is the set obtained by applying τ to x α times, reincluding x at successor stages.

Lemma A.8 If $\alpha \leq \beta$, then $\tau^\alpha(x) \leq \tau^\beta(x)$.

Proof. We proceed by transfinite induction on α. For two successor ordinals $\alpha + 1$ and $\beta + 1$,

\[
\tau^{\alpha+1}(x) = x \lor \tau(\tau^\alpha(x)) \leq x \lor \tau(\tau^\beta(x)) = \tau^{\beta+1}(x),
\]

where the inequality follows from the induction hypothesis and the monotonicity of τ. For a limit ordinal λ on the left-hand side and any ordinal β on the right-hand side,

\[
\tau^{\lambda}(x) = \sup_{\alpha<\lambda} \tau^\alpha(x) \leq \tau^\beta(x),
\]

where the inequality follows from the induction hypothesis. Finally, for a limit ordinal λ on the right-hand side, the result is immediate from the definition of $\tau^\lambda(x)$.

Lemma A.8 says that the $\tau^\alpha(x)$ form a chain in U. The element $\tau^*(x)$ is the supremum of this chain over all ordinals α.

Now there must exist an ordinal κ such that $\tau^{\kappa+1}(x) = \tau^\kappa(x)$, because there is no one-to-one function from the class of ordinals to the set U. The
least such \(\kappa \) is called the closure ordinal of \(\tau \). If \(\kappa \) is the closure ordinal of \(\tau \), then \(\tau^\beta(x) = \tau^\kappa(x) \) for all \(\beta > \kappa \), therefore \(\tau^*(x) = \tau^\kappa(x) \).

If \(\tau \) is chain-continuous, then its closure ordinal is at most \(\omega \), but not for monotone operators in general (Miscellaneous Exercise 23).

Theorem A.9 (Knaster–Tarski) \(\tau^\dagger(x) = \tau^*(x) \).

Proof. First we show the forward inclusion. Let \(\kappa \) be the closure ordinal of \(\tau \). Because \(\tau^\dagger(x) \) is the least prefixpoint of \(\tau \) above \(x \), it suffices to show that \(\tau^*(x) = \tau^\kappa(x) \) is a prefixpoint of \(\tau \). But
\[
\tau(\tau^\kappa(x)) \leq x \lor \tau(\tau^\kappa(x)) = \tau^{\kappa+1}(x) = \tau^\kappa(x).
\]

Conversely, we show by transfinite induction that for all ordinals \(\alpha \), \(\tau^\alpha(x) \leq \tau^\dagger(x) \), therefore \(\tau^*(x) \leq \tau^\dagger(x) \). For successor ordinals \(\alpha + 1 \),
\[
\begin{align*}
\tau^{\alpha+1}(x) & = x \lor \tau(\tau^\alpha(x)) \\
& \leq x \lor \tau(\tau^\dagger(x)) \quad \text{induction hypothesis and monotonicity} \\
& \leq \tau^\dagger(x) \quad \text{definition of} \ \tau^\dagger.
\end{align*}
\]

For limit ordinals \(\lambda \), \(\tau^\alpha(x) \leq \tau^\dagger(x) \) for all \(\alpha < \lambda \) by the induction hypothesis; therefore
\[
\tau^\lambda(x) = \sup_{\alpha < \lambda} \tau^\alpha(x) \leq \tau^\dagger(x).
\]

\(\square \)