
CS 6110 S14 Lecture 41 Monads 7 May 2014

1 The Mathematics of Monads

Monads are a general mechanism for extending functional languages with new features. They were introduced
in the context of functional programming by Eugenio Moggi [2] and are by now regarded as a central tool
of the functional language Haskell. There are literally dozens of tutorials available on the use of monads in
Haskell. A reasonably good one is the introduction by Philip Wadler [3].

The concept of monad goes much further back, however. They were introduced by Roger Godement in
the context of category theory as far back as 1958. The name monad was coined by Saunders MacLane
[1]. Monads are strongly related to adjunctions, one of the most ubiquitous and useful concepts of category
theory.

In this lecture we will not duplicate the content of these tutorials (the Wadler and Moggi papers are provided
as handouts). Instead we will focus on the categorical foundations of monads and give several examples in
the hope that this will aid in understanding the concept as it is used in functional programming.

2 Categories

A category consists of

• A collection of objects A,B, . . . . These are often sets with some extra structure, such as groups or
topological spaces, but abstractly they are just nodes of a directed graph. Think of them as types.

• A collection of typed morphisms f : A → B for each pair of objects A,B. The objects A and B
are called the domain and codomain of f , respectively. Morphisms are typically structure-preserving
functions from A to B, but abstractly they are just a directed edges in a graph.

• A typed composition operator ◦ such that if f : A → B and g : B → C, then g ◦ f : A → C.
Composition is associative.

• An identity morphism idA : A→ A for each object A. The identity morphisms are both left and right
identities for composition.

Examples of categories are: Sets and set functions (Set), groups and group homomorphisms, topological
spaces and continuous maps, partially ordered sets and monotone maps, CPOs and continuous functions
(CPO), vector spaces over R and linear maps. A partially ordered set (X, ≤) forms a category whose objects
are the elements of X with a unique morphism x → y iff x ≤ y. Abstractly, a category is just a typed
monoid.

3 Functors

A structure-preserving map between categories is called a functor. If C and D are categories, a functor
F : C → D maps objects A ∈ C to objects FA ∈ D and morphisms f : A → B of C to morphisms
Ff : FA→ FB of D such that F (g◦f) = Fg◦Ff and F (idA) = idFA. Functors are morphisms of categories,
and there is a category of small categories, the “small” being there to avoid set-theoretic paradoxes.

Monads are based on endofunctors, which are functors from a category to itself. In most of our examples,
the category is Set. Some examples are:

1



• The powerset functor P : Set→ Set. Here PA = {subsets of A} and if f : A→ B, then Pf : PA→ PB
takes A′ ⊆ A to {f(a) | a ∈ A′} ⊆ B.

• The term functor TΣ : Set→ Set over a given signature Σ. Here Σ consists of various function symbols
of various finite arities (for example, Σ = {f, g, c} with f binary, g unary, and c a constant). The set
of terms over variables X, denoted TΣ(X), is defined inductively; in our example, c is a term and any
x ∈ X is a term; if t is a term, then g(t) is a term; and if s, t are terms, then f(s, t) is a term. The
functor TΣ takes X to TΣ(X) and f : X → Y to TΣ(f) = λt. t{f(x)/x, x ∈ X} : TΣ(X)→ TΣ(Y ).

• The option functor Opt : Set → Set. Here OptX = {Some x | x ∈ X} ∪ {None}, and if f : X → Y ,
then Opt f maps Some x to Some f(x) and None to None.

• The lifting functor L : CPO → CPO, where L maps D to D⊥, and if f : D → E is a continuous map,
then Lf : D⊥ → E⊥, where Lf(bxc) = bf(x)c for x ∈ D and Lf(⊥) = ⊥ (see Lecture 22, 7 March).

• If (X, ≤) and (Y, ≤) are partially ordered sets regarded as categories, then a functor X → Y is just a
monotone function.

4 Monads

Each of these endofunctors gives rise to a monad in a natural way. A monad is a triple (F, η, µ) where

• F : C → C is an endofunctor on C (in most examples, C = Set);

• η is a collection of morphisms ηA : A→ FA, one for each object A; and

• µ is a collection of morphisms µA : F 2A→ FA, one for each object A.

We can think of a monad as a mechanism for introducing new structure FA on an existing object A, as
described by the endofunctor. The morphisms ηA and µA describe how morphisms are extended to handle
the new structure.

There are a few axioms that η and µ must satisfy, but we will get to these later. First some examples.

4.1 The Powerset Monad

The powerset monad consists of the powerset functor P and morphisms ηA(a) = {a} for a ∈ A and µA(C) =⋃
C for C ∈ P 2A. This is useful for modeling nondeterministic computation. A nondeterministic function

from A to B is a function f : A→ PB, where f(x) ⊆ B is the set of possible output values on input x.

Suppose we have two nondeterministic functions f : A → PB and g : B → PC and we wish to compose
them. Intuitively, we would start from some x ∈ A, then compute f(x). The output state could be any state
in the set f(x) ⊆ B. Now from any one of those states y ∈ f(x), we compute g(y) to get a set of possible
output states in C. The set of states we could be in after both steps is any state in some g(y) for some
y ∈ f(x). This is the set

⋃
{g(y) | y ∈ f(x)}.

x

y1

y2

y3

y4

z1

z2

z3

z4

z5

z1

z2

z3

z4

z5

→
∪

2



Breaking this down, we see that we first computed f(x) ∈ PB, then computed Pg(f(x)) = {g(y) | y ∈
f(x)} ∈ P 2C, then took the union to get the final set of output states

⋃
{g(y) | y ∈ f(x)}.

x
f−→ f(x)

Pg−→ {g(y) | y ∈ f(x)} µC−→
⋃
{g(y) | y ∈ f(x)}.

So the composition is given by µC ◦ Pg ◦ f : A→ PC. This is known as the Kleisli composition of f and g,
denoted g • f . Do f first to get a set; then do Pg to the resulting set, which is the same as doing g to each
element of the set, to get a set of sets; then knock it back down to just a set by taking the union.

We have not stated the axioms for η and µ, but they will imply that Kleisli composition is associative and
that η is a left and right identity for Kleisli composition. Thus the collection of objects of C with morphisms
f : A → PB under Kleisli composition and identities ηA form a category, called the Kleisli category of the
monad. The type of f : A→ PB is PB in Set, but B in the Kleisli category.

The action of a nondeterministic finite automaton is easily described in terms of Kleisli composition. Say we
have an NFA with state set S. The transitions are typically specified by a ternary relation ∆ ⊆ S×Σ×S, or
equivalently, a function ∆ : S × Σ→ PS. This function can be extended by induction to ∆̂ : S × Σ∗ → PS
as follows:

∆̂(s, ε)
4
= {s} ∆̂(s, xa)

4
=

⋃
{∆(t, a) | t ∈ ∆̂(s, x)}.

However, if we curry ∆ and ∆̂ to the form ∆ : Σ → S → PS and ∆̂ : Σ∗ → S → PS respectively, we can
just say that ∆̂ is the unique extension of ∆ to a monoid homomorphism from the free monoid Σ∗ to the
monoid of functions S → PS under Kleisli composition.

The Kleisli category of the powerset monad is isomorphic to the category of Rel of sets and binary relations
under relational composition.

4.2 The Term Monad

The term monad consists of the term functor TΣ : Set→ Set with ηX : X → TΣ(X) that takes the variable
x to the term x and µX : TΣ(TΣ(X))→ TΣ(X) that takes a term over terms over X and just considers it a
term over X. Neither ηX nor µX actually does anything to the term, they just change its type.

4.3 The Option Monad

The option monad consists of the option functor Opt : Set→ Set with ηX(x) = Some x, µX(Some Some x) =
Some x, and µX(Some None) = µX(None) = None. Kleisli composition in this monad can be implemented
in OCaml as follows:

let compose (f : ’a -> ’b option) (g : ’b -> ’c option) : ’a -> ’c option =
fun (z : ’a) -> match f z with
| Some x -> g x
| None -> None

4.4 The List Monad

In OCaml, ’a list is the type of lists of objects of type ’a. This gives a monad with η the polymorphic
function fun x -> [x] of type ’a -> ’a list and µ the polymorphic function List.flatten with type
’a list list -> ’a list. Kleisli composition is

let compose (f : ’a -> ’b list) (g : ’b -> ’c list) : ’a -> ’c list =
fun (x : ’a) -> List.flatten (List.map g (f x))

3



4.5 Closure Operators

Let (X, ≤) be a partially ordered set regarded as a category. The monads on X are just the closure operators:
functions cl : X → X such that x ≤ clx, x ≤ y ⇒ clx ≤ cl y, and cl clx = clx.

5 Lifting

If (F, η, µ) is a monad, then a morphism f : A→ FB of the Kleisli category can be lifted to f† : FA→ FB

by: f† 4= µB ◦ Ff .
FA

Ff−→ F 2B
µB−→ FB.

y1

y2

y3

y4

z1

z2

z3

z4

z5

z1

z2

z3

z4

z5

→
∪ Lifting

=⇒

y1

y2

y3

y4

z1

z2

z3

z4

z5

The lifting operation (·)† is invertible, as f can be recovered from f† by composing it on the right with ηA.
Thus the Kleisli category with Kleisli composition is isomorphic to the subcategory with objects FA and
lifted morphisms under ordinary composition.

In the example involving nondeterministic finite automata above, lifting is just the subset construction that
constructs an equivalent deterministic automaton. For the term monad, it constructs a substitution operator
on terms from a given substitution. It is strange to think that two fundamental operations in vastly different
areas turn out to be the same thing at this level of abstraction.

6 Monads in Functional Programming

In functional programs, monads are represented by

• a parameterized type constructor ’a m, playing the role of the endofunctor;

• a polymorphic function return : ’a -> ’a m, playing the role of η; and

• a polymorphic function bind : ’a m -> (’a -> ’b m) -> ’b m, serving the same purpose as µ. The
function bind is denoted >>= in Haskell and is used as an infix operator.

Recurrying bind to switch the order of its arguments, its type becomes (’a -> ’b m) -> ’a m -> ’b m.
We see then that it just maps a function of type ’a -> ’b m to its lifted form. Then µ can be obtained
from bind by setting ’a = ’b m and applying it to the identity function on ’b m:

let mu (x : ’b m m) : ’b m = bind x (fun y -> y)

Similarly, bind can be recovered from mu, but this computation depends on the definition of m. In particular,
we need a map function for m of type (’a -> ’b) -> ’a m -> ’b m. Category theoretically, this corresponds
to the action of the functor m on morphisms. Then if we had mu, we could define

let bind (x : ’a m) (g : ’a -> ’b m) : ’b m = mu (map g x)

4



6.1 Example: Encoding Substitution

Let us use the term monad over the signature Σ = {f, g, c} to encode substitution.

(* the type of terms over signature f, g, c with variables ’a *)
type ’a term = Var of ’a | F of (’a term) * (’a term) | G of (’a term) | C

(* the term monad *)
let rec bind (t : ’a term) (g : ’a -> ’b term) : ’b term =
match t with
| Var x -> g x
| F (t1, t2) -> F (bind t1 g, bind t2 g)
| G t1 -> G (bind t1 g)
| C -> C

let return (x : ’a) : ’a term = Var x

(* lifting is just applying a substitution *)
let lift (g : ’a -> ’b term) (x : ’a term) : ’b term = bind x g

(* let’s try it – here is a substitution... *)
let s = function
| 1 -> F (G (Var "y"), C)
| 2 -> G (F (Var "y", Var "x"))
| _ -> failwith "Unknown variable"

(* ...and a term to substitute into *)
let t = F (F (Var 1, C), G (Var 2))

# #load "monad.cmo";;
# open Monad;;
# lift s t;;
- : string Monad.term =
F (F (F (G (Var "y"), C), C), G (G (F (Var "y", Var "x"))))

Monads allow the programmer to encapsulate a strategy for composing computations involving some ex-
tended functionality. For example, the option monad allows the programmer to say uniformly how to
compose functions that may not return values.

7 Axioms for Monads

Monads must satisfy the following axioms. First, η and µ must be natural transformations, which means
they must behave the same way on all objects. Formally, this means that they must commute with all
morphisms h of the category. So the following diagrams must commute:

FA FB

A B

ηA

h

ηB

Fh
FA FB

F 2A F 2B

µA

F 2h

µB

Fh

This is just a pictorial representation of the equations

ηB ◦ h = Fh ◦ ηA µB ◦ F 2h = Fh ◦ µA.

5



In addition, η and µ must satisfy the following commutative diagrams.

F 2A FA

F 3A F 2A

FµA

µFA

µA

µA
F 2A FA

FA

idFA = F idAηFA

µA

F 2AFA

FA

idFA = F idA

µA

FηA

or in other words

µA ◦ µFA = µA ◦ FµA µA ◦ ηFA = idFA µA ◦ FηA = idFA.

These properties imply that Kleisli composition is associative and the ηA are left and right identities for
Kleisli composition.

References

[1] Saunders MacLane. Categories for the Working Mathematician. Springer-Verlag, New York, 1971.

[2] Eugenio Moggi. Notions of computation and monads. Information and Computation, 93(1), 1991.

[3] Philip Wadler. Monads for functional programming. In M. Broy, editor, Marktoberdorf Summer School
on Program Design Calculi, volume 118 of NATO ASI Series F: Computer and systems sciences. Springer
Verlag, August 1992.

6


