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1 Introduction

Type checking is a lightweight technique for proving simple properties of programs. Unlike theorem-proving
techniques based on axiomatic semantics, type checking usually cannot determine if a program will produce
the correct output. Instead, it is a way to test whether a program is well-formed, with the idea that a
well-formed program satisfies certain desirable properties. The traditional application of type checking is
to show that a program cannot get stuck; that is, that a type-correct program will never reach a non-final
configuration in its operational semantics from which its behavior is undefined. This is a weak notion of
program correctness, but nevertheless very useful in practice for catching bugs.

Type systems are a powerful technique. In the past couple of decades, researchers have discovered how to
use type systems for a variety of different verification tasks.

2 λ→

We have already seen some typed languages in class this semester. For example, OCaml and the metalanguage
used in class for denotational semantics are both typed.

To explore the idea of type checking itself, we introduce λ→, a typed variant of the λ-calculus in which we
assign types to certain λ-terms according to some typing rules. A λ-term is considered to be well-formed
if a type can be derived for it using the rules. We will give operational and denotational semantics for this
language. Along the way, we will discover some interesting properties that give insight about typing in more
complex languages.

3 Syntax

The syntax of λ→ is similar to that of untyped λ-calculus, with some notable differences. There are two
kinds of inductively-defined expressions, terms and types:

terms e ::= n | true | false | null | x | e1 e2 | λx : τ . e
types τ ::= int | bool | unit | τ1 → τ2

One difference is that the natural numbers, Boolean constants, and null are taken to be primitive symbols
and not defined as λ-terms. For this reason, we no longer need to distinguish between the syntactic objects
n and true and their semantic counterparts n and true, so we might as well just identify them. Another
difference is that a λ-abstraction explicitly mentions the type of its argument.

A value is either a number, a Boolean constant, null, or a closed abstraction λx : τ . e. The set of values is
denoted Val. The set of types is denoted Type.

There is a set of typing rules, given below, that can be used to associate a type with a term. If a type τ can
be derived for a term e according to the typing rules, we write ` e : τ . This metaexpression is called a type
judgment.

For example, every number has type int, thus ` 3 : int. The type unit is the type of the value null, and
nothing else has this type. The function trueint = λx : int. λy : int. x has the type int → (int → int). The →
constructor associates to the right, so int→ (int→ int) is the same as int→ int→ int. Thus we can write

trueint
4
= (λx : int. λy : int. x) : int→ int→ int.
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Not all λ-terms can be typed, for instance λx : int. xx or true 3. These expressions are considered nonsensical.

Right now, we cannot do anything interesting with integers or Booleans, because we do not have any
operations on them. Later on we will be adding other typed constants such as plus : int→ int→ int and
equal : int→ int→ bool, but for now they are just there to set the stage.

4 Small-Step Operational Semantics and Type Correctness

The small-step CBV operational semantics of λ→ is the same as that of the untyped λ-calculus. The presence
of types does not alter the evaluation rules for expressions.

E ::= E e | v E | [ · ] (λx : τ . e) v → e{v/x}

We will eventually show that these reduction rules preserve typing in the sense that if e has type τ and
e
∗→ e′, then e′ also has type τ . Coupled with the observation that all well-typed terms are either values or

can be further reduced, this says that no well-typed term can become stuck. Thus the typing rules can be
used in place of runtime type checking to ensure strong typing.

It is natural to ask what a type-incorrect term might look like and how it could get stuck. Recall our function
definition for trueint above, and consider the following additional definition:

if int
4
= λt : int→ int→ int. λa : int. λb : int. t a b.

Clearly, if int trueint 2 3 evaluates to 2. However, if int true 2 3 → true 2 3, and this expression is meaningless,
since true is not a function and cannot be applied to anything. Therefore, the program would be stuck at
this point.

5 Typing Rules

The typing rules will determine which terms are well-formed λ→ programs. They are a set of rules that
allow the derivation of type judgments of the form Γ ` e : τ . Here Γ is a type environment, a partial map
from variables to types used to determine the types of the free variables in e. The domain of Γ as a partial
function Var ⇀ Type is denoted domΓ.

The environment Γ[τ/x] is obtained by rebinding x to τ (or creating the binding anew if x 6∈ domΓ):

Γ[τ/x](y)
4
=


Γ(y), if y 6= x and y ∈ domΓ,

τ, if y = x,

undefined, otherwise.

The notation Γ, x : τ is synonymous with Γ[τ/x]. The former is standard notation in the literature. Also,
one often sees x : τ ∈ Γ, which means just Γ(x) = τ .

We also write Γ ` e : τ as a metaexpression to mean that the type judgment Γ ` e : τ is derivable from the
typing rules. The environment ∅ is the empty environment, and the judgment ` e : τ is short for ∅ ` e : τ .

The typing rules are:

Γ ` n : int Γ ` true : bool Γ ` false : bool Γ ` null : unit Γ, x : τ ` x : τ

Γ ` e0 : σ → τ Γ ` e1 : σ

Γ ` e0 e1 : τ

Γ, x : σ ` e : τ

Γ ` (λx : σ. e) : σ → τ
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Let us explain these rules in more detail.

• The first four rules just say that all the base values have their corresponding base types.

• For a variable x, Γ ` x : τ holds if the binding x : τ appears in the type environment Γ; that is, if
Γ(x) = τ .

• An application expression e0 e1 represents the result of applying the function represented by e0 to the
argument represented by e1. For this to have type τ , e0 must be a function of type σ → τ for some σ,
and its argument e1 must have type σ. This is captured in the typing rule for e0 e1.

• Finally, a λ-abstraction λx : σ. e is supposed to represent a function. The type of the input should
match the annotation in the term, thus the type of the function must be σ → τ for some τ . The type
τ of the result is the type of the body under the extra type assumption x : σ. This idea is captured in
the typing rule for λ-abstractions.

Every well-typed λ→ term has a proof tree consisting of applications of the typing rules to derive a type for
the term. We can type-check a term by constructing this proof tree. For example, consider the program
(λx : int. λy : bool. x) 2 true, which evaluates to 2. Since ` 2 : int, we expect ` ((λx : int. λy : bool. x) 2 true) : int
as well. Here is a proof of that fact:

x : int, y : bool ` x : int

x : int ` (λy : bool. x) : bool→ int

` (λx : int. λy : bool. x) : int→ bool→ int ` 2 : int

` ((λx : int. λy : bool. x) 2) : bool→ int ` true : bool

` ((λx : int. λy : bool. x) 2 true) : int

An automated type checker can effectively construct proof trees like this in order to test whether a program
is type-correct.

Note that types, if they exist, are unique. That is, if Γ ` e : τ and Γ ` e : τ ′, then τ = τ ′. This can be proved
easily by structural induction on e, using the fact that there is exactly one typing rule that applies in each
case, depending on the form of e.

6 Expressive Power

By now you may be wondering if we have lost any of the expressive power of λ-calculus by introducing types.
The answer to this question is a resounding yes. For example, we can no longer compose arbitrary functions,
since they may have mismatched types.

More importantly, we have lost the ability to write loops. Recall the paradoxical combinator

Ω
4
= (λx. xx) (λx. xx).

Let us show that any attempt to derive a typing for the term λx : σ. xx must fail:

Γ, x : σ ` x : σ → τ Γ, x : σ ` x : σ

Γ, x : σ ` xx : τ

Γ ` (λx : σ. xx) : σ → τ

We see that we must have both Γ, x : σ ` x : σ → τ and Γ, x : σ ` x : σ. However, since types are unique,
this is impossible; we cannot have σ = σ → τ , since no type expression can be a subexpression of itself. We
conclude that the term λx : σ. xx cannot be typed.
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In fact, we will see later that we cannot write down any nonterminating program in λ→. This will turn out
be true from an operational perspective as well. In later lectures we will show how to extend the type system
to allow loops and nonterminating programs.

7 Denotational Semantics

Before we can give the denotational semantics for λ→, we need to define a new meaning function T [[ · ]] that
maps each type to a domain associated with that type. For this type system, the definition of T [[ · ]] is
straightforward:

T [[ int ]]
4
= Z

T [[bool ]]
4
= 2

T [[unit ]]
4
= {null}

T [[σ → τ ]]
4
= T [[σ ]]→ T [[τ ]].

In the last equation, note that the → on the left-hand side is just a symbol in the language of types, a
syntactic object, whereas the → on the right-hand side is a semantic object, namely the operator that
constructs the space of functions between a given domain and range. For now, these domains need not have
any ordering properties; they are just sets. So we have T [[ · ]] : Type → Set.

For any closed term e, if ` e : τ , then we expect the denotation of e to be an element of T [[τ ]]. More generally,
for a term e possibly containing free variables, if there is a type environment Γ and a value environment ρ
such that ρ and Γ are defined on all the free variables of e and ρ(x) ∈ T [[Γ(x)]] for all x ∈ FV(e), and if
Γ ` e : τ , then we expect the denotation of e in environment ρ to be an element of T [[τ ]].

We say that the value environment ρ satisfies a type environment Γ and write ρ � Γ if domΓ ⊆ dom ρ and
for every x ∈ domΓ, ρ(x) ∈ T [[Γ(x)]].

We are now ready to give the denotational semantics for typed λ-terms. We only define the meaning function
for well-typed expressions. The following function is defined only for e, Γ, and ρ such that ρ � Γ and e is
well-typed under Γ; that is, Γ ` e : τ for some type τ .

C[[n ]]Γρ
4
= n

C[[true ]]Γρ
4
= true

C[[ false ]]Γρ
4
= false

C[[null ]]Γρ 4
= null

C[[x ]]Γρ
4
= ρ(x), x ∈ domΓ

C[[e0 e1 ]]Γρ
4
= (C[[e0 ]]Γρ) (C[[e1 ]]Γρ)

C[[λx : τ . e ]]Γρ
4
= λv ∈ T [[τ ]] . C[[e ]]Γ[τ/x]ρ[v/x]

8 Soundness

It is possible to show that C[[ · ]] satisfies the following soundness condition: for all ρ, Γ, e, and τ ,

ρ � Γ ∧ Γ ` e : τ ⇒ C[[e ]]Γρ ∈ T [[τ ]].

The proof is by induction on the structure of e. The only interesting step is the case of a λ-term, which
requires the observation

ρ � Γ ∧ v ∈ T [[τ ]] ⇒ ρ[v/x] � Γ[τ/x].
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Note that ⊥ does not appear anywhere in this semantics. We did not need it because we never took a
fixpoint. We can conclude that all well-typed λ-terms represent total functions.

Of course, we will also want to see that the operational semantics is adequate with respect to this model to
ensure that our evaluation relation actually produces the values of the correct type that the denotational
model advertises are there. For example, for a closed term e such that ` e : int, the adequacy condition
would say that

e
∗→ n ⇔ C[[e ]]∅∅ = n.
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