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CHAPTER 4 

COMPUTABLE FUNCTIONALS OF FINITE TYPE 

1. INTRODUCTION 

1.1. The subject matter of the present chapter originated with Godel 
1958. The second incompleteness theorem showed that there is no hope of 
obtaining a consistency proof of extensions of arithmetic by strictly 
finitary methods. The problem still remained of obtaining a proof 
theoretical reduction and a consistency proof of extensions of arithmetic 
by methods which, although not finitary, could be considered more 
justified from some epistemological point of view than the methods 
formalized in these extensions of arithmetic. 

Gentzen showed that the consistency problem of arithmetic was 
reducible by means of finitary methods to the problem of the well
foundedness of a primitive recursive ordering relation of order type e0• 

Another suggestion was given by Godell958, who showed how to obtain 
a proof theoretical reduction of arithmetic by methods obtained by 
adjoining to the finitary methods of primitive recursive arithmetic 
some abstr(lct notions, namely a cer~in notion of constructivefwiction. 

1.2. The constructive functions introduced by Godel are called the 
computable functionals of finite type, where the computable functionals 
of lowest type are the natural numbers and the computable functionals 
of type -r:-+a are rules or operations, which when applied to computable 
functionals of type -r: can be constructively proved always to yield com
putable functionals of type a as values. This notion is to be understood 
as a primitive, immediately understood notion, and the only notions 
and methods to be used in the consistency proof beyond those of primi
tive recursive arithmetic, are the abstract notion of computable func-
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tional of finite type and certain elementary construction principles for 
such functionals expressed by defining equations. For the consistency 
proof to be reductive, the use of the notion of a computable functional 
should not involve some abstract notion of proof. The strength of the 
reasoning is to come from principles of definition or of construction 
rather than from rules of inference. 

1.3. Godel described an equation calculus T intended to codify those 
ideas and showed how to interpret HA (Heyting arithmetic) in T. The 
formulas ofT are equations, a = b, between terms a and b of the same 
finite type. If a and b have the type of the numbers, then a= b means 
that a and b denote the same number. If a and bare of higher type over 
the numbers, then a = b means inten$ional equality.1 That is, the rules 
of correspondence codified in the terms a and b are one and the same, 
or the terms a and b have the same meaning relative to the meaning 
given to the terms by the defining equations. 

It is through the interpretation of equality between terms of higher 
types as intensional equality between rules that a statement in T about 
computable functionals of higher types does not involve some abstract 
notion of proof. 

So, from the philosophical point of view of Godell958, we must admit 
such abstract objects as computa,ble functionals of higher types as 
certain rules of correspondence, being the objects in the intended model. 
These objects are to be considered as being on the same ontological 
level as such abstract objects as meaningful assertions, proofs, etc. For 
the consistency proof intended by Godel, it is not necessary to have 
complete knowledge of the .intended model; it is only important to 
accept the notion of a computable functional of finite type, because 
whatever the totality of these functionals are they must satisfy the 
elementary axioms of T. 

That abstract objects of this kind are justified from a constructive point 
of view was first pointed out explicitly by Godel 1958, although they 
had been used implicitly in informal intuitionistic reasoning. 

1.4. In this chapter we shall codify the computable functionals of an 

1 We follow here the terminology in Godel1958. The qualification 'intensional' means 
(for us) only that we do not expect extensionality to hold. 
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extension of T using ?.-terms which are assigned types, and certain 
recursion combinators. The usefulness of the ?.-terms for this purpose 
is due to the fact that ?.-terms codifies rules. A ?.-term does not just name 
a rule; it also expresses the corresponding computation process. It codifies 
the definition or construction of the rule. For example, if we understand 
the ?.-operator, then by looking at the term J.x.x we see how the com
putation process of the corresponding rule works. 

Rules tie together to form other rules by means of application and 
functional abstraction in the ?.-calculus, and the choice of those two 
notions for the analysis of the general notion of a rule does not seem 
to be arbitrary. Rules are thought of as operations that can be applied to 
certain objects as arguments, so any theory of rules should make explicit 
mention of application. 

The most general way of obtaining rules is by explicit definition: A 
linguistic expression a(x) containing an indeterminate x determines a 
rule which when applied to an argument b has a{b) as a value. In the?.
calculus this is the role of ?.-abstraction or functional abstraction. 

It is true that functional abstraction could be replaced by and defined 
in terms of some specific rules, i.e. combinators. But it _seems more 
natural here to take it as a primitive notion, since, as already pointed 
out, rules are usually expressed by linguistic expressions containing 
variables in informal reasoning. 

Application and ?.-abstraction can be said to play the same role for 
rules as the logical operations play for propositions. They are appro
priate for expressing the logically significant properties of rules. The 
Dialectica interpretation of Godel 1958, can be said to show how to 
reduce the logical operations of · HA to the ''logic of rules" in T. 

The ?.-terms are also useful for the reason that we obtain a natural 
way of representing the computation processes of the computable 
functionals, namely as reduction rules. This was first realised by Tait 
1965 and 1967 a who calls them conversion rules. The particular 
reduction procedures in the ?.-calculus are interesting also for the reason 
that they are isomorphic to reduction procedures in systems of natural 
deduction, as will be seen in the next chapter. 

1.5. In the next section we shall describe an extension T' of T. T' is a 
simplification of the system r 4 introduced by Howard 1963. Using the 
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Dialectica interpretation, Howard showed how to interpret a system of 
intuitionistic analysis with bar-recursion of type 0 in r 4• The consistency 
of intuitionistic analysis is thus finitarily reducible to that of r 4• Also, 
the consistency of the classical system Z1 of elementary analysis of 
well-founded relations of Howard and Kreisel 1966 is reducible to that 
of r4. 

T' is also closely related to the system T1 introduced by Tait 1967 a. 
But we have followed Howard 1963 by working with two basictypes, one 
for natural numbers and one for the Brouwer ordinals. T' will be 
presented as an equation calculus for deriving equations between terms 
of the same finite type. In section 7 we present the reduction rules 
and use them to give a different characterization of intensional equality. 
In section 8 we establish the consistency of the reduction rules of T' 
using the computability method introduced by Tait 1967 a. We will in 
fact prove something more, namely a strong normalization theorem 
(in the terminology of Prawitz 1970) to the effect that each reduction 
sequence is finite. While Tait 1967 a proves that each closed term is 
normalizable, we will prove the strong normalizability of all terms. This 
is needed for the results in section 9, where we introduce the notion of a 
model for T' and prove the completeness of the axioms and rules for 
intensional equality. 

2. FINITE TYPES AND TERMS OF FINITE TYPES 

2.1. thefinite types are defined inductively, ·· 

(i) 0 is a finite type, 

(ii) 1 is a finite type, 

(iii) if a and < are finite types, then (a->-<) is a finite type. 

The types of clause (i) and (ii) are the atomic types and the types of 
clause (iii) are the higher types. We will write a1 -->- ... ->-an -->-< for (a1 -->
.. . -->- (an -->- <) ... ) . Each finite type is then uniquely of the form a1 -->- ... 
->-an-->-<, where< is 0 or 1 and n ;;;.o. Arbitrary types will be denoted by 
a, <,(!, ... 
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The intended interpretation of the finite types is this: The objects of 
type 0 are the natural numbers and the objects of type I are wellfounded 
trees, i.e. Brouwer ordinals. The objects of type 0 and 1 are said to be 
computable functionals. The objects of type a->-< are computable 
functionals, which are defined to be rules or functions, which, when 
applied to computable functionals of type a always yield computable 
functionals of type < as values. The universal quantifier 'always' is here 
to be understood in the constructive sense. 

2.2. Terms of finite types. We first introduce some constants, each with a 
fixed type. 

2.2.1. 00 is a constant of type 0, intended to denote the number 0. 

2.2.2. 01 is a constant of type I, intended to denote the ordinal 0. 

2.2.3. S0 is a constant of type 0-->-0, intended to denote the successor 
operation on natural numbers. 

2.2.4. S1 is a constant of type (0-->-1)-->-1, intended to denote the 
supremum operation on sequences of ordinals. 

2.2.5. For each type <, there is a constant R~ of type 

intended to denote the primitive recursion functional. 

2.2.6. For each type <, there is a constant RI of type 

<-->-((0-->-1)-->-(0-->-<)-->-<)-->-I-->-<, 

intended to denote the ordinal recursion functional. 
The meaning of the recursion functionals will be further explained 

through their defining equations in section 3 . . 

The terms of finite types are then defined by the following inductive 
definition. 

(i) 

(ii) 

Each constant of type < is a term of type <. 

For each type <, there is a denumerably infinite list of 
variables of type < and each variable of type < is a term 
of type <. The variables will be denoted x .. ; y .. , z .. , ... 

8- 722416 Sten!und 
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(iii) 

(iv) 

COMBINATORS, A-TERMS AND PROOF THEORY 

If a is a term of type -r and x is a variable of type a, then 
A.x.a is a term of type a-+-r. (Functional abstraction.) 

If a is a term of type a-+-r and b is a term of type a, then 
(ab) is a term of type -r. (Application.) 

Terms will be denoted by a-r:, b-r, cr:, •••• Sometimes we will denote a 
term of type 0 or 0-+1 by t. Free and bound variables are defined as 
usual and we will identify terms that differ only in their bound variables. 
A substitution a(b) of b for x in a(x) is also defined as in chaper 1 with the 
exception that now, x and b must have the same type. Assuming that 
types are-always properly chosen, we shall generally omit type super.:. 
scripts. We write as usual a1 ••• an for ( ... (a1 a2) ••• an) and A.x1 ••• Xn.a 

for Axt.h2 •••• Axn. a. 
. The numerals are the terms 00 , S0 00 , S0(S0 00), ••• We denote t}].emby 
0, I, 2, ... , respectively. 

3. THE EQUATION CALCULUS 

We shall present an equation calculus T' by giving axioms and inference 
rules for deriving equations of the form 

where a and bare terms of the same finite type, and for deriving equations 
of the form 

a=b, 

where a and b are terms, both of type 0 or both of type I. 

3.1. Axioms and rules for intensional equality. 
3.1.1 Equality axioms. 

(il) a = 1a 

(i 2) 

(i 3) 

(i 4) 

(i 5) 
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a= 1 b, b= 1 c 

a= 1 b,c= 1d 
ac= 1bd 

a= 1 b 
Xx.a=;A.x.-b 

3.1.2. Axioms for constants and A.-abstraction. 

(i 6) 
R0 ab0 = 1a 

R 0ab(S0 t) = 1bt(R0 abt) 

(i 7) 
R1 ab01 = 1a 

R 1 ab(S1 t) = 1bt(A.x.R1 ab(tx)) 

(i8) (A.x.a(x))b= 1a(b) 

(i9) A.x.ax= 1a 

(In the axioms (i 7) and (i 9), x is not free in a, b and t) 
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3.2. Axioms and rules for equality of type 0 or 1. The terms are assumed 
to have types such that the left and right hand sides in the axioms and 
in the conclusions of the rules ate of type 0 or 1. 

Je 1) . 

(e2) 

(e3) 

(e4) 

(e 5) 

a=a 

a=b 
b=a 

a = b,b = c 
a=c 

c=d 
(c and d of type 0 or 1) 

ac = ad 

a = b 
(c of type 0 or 1) 

(A.x .a)c= (A.x . b)c 
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(e 6) 

(ffi) 

/ 
/0 =a, f(S0 t) = btUt) 

ft=R0 abt 

3.4. Those are all the axioms and rules of inference of T'. It is not 
necessary to postulate a transfinite induction rule of the form 

(TI) 
/01 = a,f(S1 t) = bt(/..x .f(tx)) 

fc=R1 abc 

for, as shown by Howard 1963 and 1968a, it can be derived by the 
method of Kreisel 1959. 

By using two notations = 1 and = for equality, we do not want to 
suggest that there are different kinds of identity with respect to a certain 
interpretation. On the intended interpretation = 1 denotes identity 
between objects of higher types, and = denotes identity between objects 
of type 0 or 1, and in the latter case = ; is simply a subrelation of =. 
The index on the relation = 1 functions only as a deduction technical 
device. It imposes a restriction on the inference rule (i 5), which would 
not be valid for the intended interpretation if all indices i were omitted, as 
will be argued below. 

With respect to the classical intended interpretation (where the 
objects of higher types are functions in extension) one can, of course, 
think of = 1 as denoting a subrelation of identity at all types. The axioms 
for = ;are then all properties needed of identity to prove the Dialectica 
interpretation of the axioms of intuitionistic analysis in T'. But from the 
point of view of sections l.1, 1.2 and 1.3 in the introduction, the classical 
model is of course uninteresting. 

3.5. Truth-functions. This equation calculus is (with trivial modifica
tions) an extension of primitive recursive arithmetic in the sense of 
Goodstein 1957. Therefore we can define closed terms +, ...:...., ·, all of 
type 0-+0-+0 such that (where a+b means +ab etc.) 

a+(S0 b) = S0(a + b) 

COMPUTABLE FUNCTIONALS OF FINITE TYPE 

o...:....I=o 
(S0 a)...:....1 =a 

a · O=O 

a·(S0b) = (a·b)+a. 

117 

Using the induction rule (IR), we can prove the usual properties of those 
functions as in recursive arithmetic. For x andy of type 0, we can define 
the constant E of type 0-+0-+0 by 

and prove that for all terms a and b of type 0, 

Eab = 0 iff a =b. 

It was Godel's intention that formulas ofT should be built up by means 
of propositional truth-functions. Having the equality function E, we 
can define the truth-functions as in recursive arithmetic. 

•(a = b) means (I...:....Eab)=O 

and 

(a = b)-+ (c =d) means (I...:....Eab) · (Ecd) =0. 

In this way, all tautologies of the classical propositional calculus becomes 
provable in T'. Furthermore, using the induction rule we can prove the 
following formulas 

-, (S0 t = 0) 

(S0 t = S0 t')-+ t = t' , 

i.e. the Peano third and fourth axioms. 
Tait 1967 seems, however, to suggest that the formulas of T are to 

be built up by means of propositional truth-functions from equations 
between terms of the same arbitrary finite type. And for the interpretation 
of Heyting arithmetic of all finite types HAw or IDBw in the sense of 
Troelstra 1970, one has to form formulas between terms of higher types. 
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One way to do this within an equation calculus like T', is by intro
ducing equality functionals £'< of type r-+r-+0 with the axioms 

If a and b are distinct closed normal1 

terms, infer Eab = I . 

But the functionals E< seem to be of an unnatural kind compared 
to the ones explained in section 2.1. In a certain sense, the functionals 
E' operate on terms. So we prefer not to use them. 

The best way to proceed if one wants to have formulas built up 
from equations between terms of higher types, seems to be to go 
outside the equation calculus and take the propositional operations 
--, , -+, etc. as primitives. 

4. THE ROLE OF THE INDUCTION RULE 

4.1. In some presentations of (extensions of) Godel's T, eg in Kreisel 
1970, the induction rule is formulated such that it applies to terms of 
arbitrary finite type, i.e. the terms in the conclusion ft=R0 abt of (IR) 
may have the same arbitrary finite type. In other formulations of (exten
sions of) T, an extensional notion of equality between terms of higher 
types is used (cf. Spector 1962). For the purpose of obtaining the 
consistency proof of HA intended by Godel 1958, this seems not to be 
quite correct. We think that it is not in agreement with the philosophical 
position of section 1.2 and 1.3. 

First of all, the induction rule for terms of higher types is not needed 
for the proof in T of the Dialectica interpretation of the axioms of HA. 
The induction rule enters only in the proof in T of the Dialectica inter
pretation of the induction axioms of HA, and for this it suffices to have 
(IR) of type 0. All axioms of HA are transformed into equations 
between terms of type 0 by means of the Dialectica interpretation. And 
intensional equality is used through our rule (e 6) to reduce the 
logical operations of HA to the computable functionals of T. 

Secondly, (and more important) an equation between terms of higher 
types means (intensional) equality between rules of correspondence 

1 For a definition of the normal terms see section 7. 

~--..... 
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and it would be unjustified to use the principles of proof (IR) or 
extensionality to infer such a statement. 

Consider for example the term 

R0 ab 

where a is a closed term of higher type r and b =J.x0
• A.y'. a. Then, by 

the induction rule and (i 5) without restriction, we could prove 

A.x.a =Ax.R0 abx, 

where x is a variable of type 0. But the terms ).x. a and A.x. R0 abx are 
not intensionally equal as we understand this notion; they express different 
definitions. The equation is justified by means of proof by mathematical 
induction and not by the meaning given to R0 by its defining equation 
only. 

Of course one may be interested in (extensions of) T for other reasons 
than obtaining the consistency proof intended by Godel, and then 
there may be some interest in seeing what happens when our restrictions 
on (IR) is dropped. Tait's 1967 a and Howard's 1968b analysis of the 
terms for T without this restriction on (IR), establish its consistency 
by the same methods that are needed to prove the consistency of the 
system with (IR) of type 0 only. This is so since, in their systems, the 
two equality relations coincide for closed terms of the same arbitrary 
type. 

4.4. The induction rule (IR) is equivalent to the induction rule in the 
following, more usual, form: 

(IR)' 
a(O) = b(O), a(t) = b(t)-+ a(S0 t) = b(S0 t) 

a(t) = b(t) 

This fact is proved as in recursive arithmetic (cf. Goodstein 1957). In 
(IR)' it is of course assumed that a(x) and b(x) are of atomic type. If we 
added to T' an equality functional E' of type r-+r-+0 for all types r with 
the rule 

(E) a = b iff Eab = O, for terms a and b of the same finite type 
(even when Eab = O follows by (IR)), 
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as in Troelstra 1970, then we could derive (IR)' from (IR) even if we 
permitted induction of all finite types. But this result can be sharpened. 
In the presence of rule (E), (IR)' of type 0 implies (IR)' of all finite 
types. For suppose that atx) and b(x) are terms of type r and x a 
variable of type 0 and assume that we have 

a(O) = b(O) 

and 

a(t) = b(t)-+ a(S0 t) = b(S0 t). 

Let 

f =Ax. Ea(x)b(x) 

Then by (E) we have 

By (IR)' of type 0 we infer ft = 0, i.e. Ea(t)b(t) = 0, so the result 
a(t) =b(t) follows by (E). 

However, the equality relation between terms of higher types 
obtained by adjoining (E) will not be further considered here. 

5. SOUNDNESS OF THE AXIOMS 

5.1. As already pointed out, a statement a = 1b means that we are able to 
see immediately by inspection of the linguistic expression a and b that 
they express the same rule of correspondence or have the same mean
ing. 

It is then immediate that the equality axioms (i 1), ... , (i 5) are 
justified. (i 1 ), (i 2), (i 3) for the reason that we conceive of the relation 
'having the same meaning' as being an equivalence relation. (i 4) and 
(i 5) are justified by the following semantical principle: 

A substitution of an expression a for an expression b with 
the same meaning as a in an expression c does not change 
the meaning of c. 

.-
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This principle is implicit in the relation of having the same meaning. 
It could be considered as an adequacy condition for this relation. Since 
we also substitute open terms, as in the case of (i 5), the question arises 
of what it means to say that two open terms have same meaning, or, in 
other words, what it means for an equation between open terms to be 
valid in the sense of intensional equality. One might think that (i 5) 
involves proof. This is not the case since the premiss of (i 5) requires that 
we should see simply by inspection of the terms a(x) and b(x) that they 
will have the same meaning uniformly in any meaning assigned to x. 

5.2. The axioms and rules for the recursion constants are valid by 
assumption. They give the constants their meaning. The axiom (i 8) is 
valid for the same reason. It is the defining equation for A-abstraction. 
The axioms (i 6), (i 7) an (i 8) express the principles of definition of 
computable functionals that we allow ourselves to use. 

5.3. The axiom (i 9) is the crucial one. Let r denote a rule that assigns 
objects of type a to objects of type r and consider the rule r' described 
as follows: 

r': To an object x of type r assign the object obtained by 
applying the rule r to x. 

The axiom (i 9) asserts that r and r' denote the same rule. Thinking of a 
rule as a process whereby one steps from argument to value this appears 
not to be true. The process r' is almost the same as r but it seems to 
contain an additional initial step. One might however think that this 
additional step is redundant and does not reflect any significant dif
ference between the rules r and r', or, in other words, that r' is just a 
more complicated way of communicating the rule r. 

However, (i 9) cannot be justified only by the meaning given to 
A-abstraction by its defining equation. Using this meaning only, we 
can see that Ax.ax and a will aways have the same value uniformly in 
their argument, i.e. that 

(h.ax)x = 1ax 

but to conclude that therefore Ax. ax = 1a, requires an additional 
assumption. And to adopt (i 9) would be to make this assumption 
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implicit in the primitive notion of a computable functional. I think 
that this is a reasonable assumption concerning the notion of function 
of the present chapter, since we can still maintain the philosophical point 
of view explained in the introduction. By adding (i 9) a statement 
a= 1b still does not involve any abstract notion of proof, because we 
are able to decide wether a and b express the same rule simply by 
inspection of the terms a and b. This will be verified in section 8. 

It should also be noted that (i 9) asserts something new only when a 
is not equal to a term of the form Ay.a'(y). For suppose that a is equal 
to a term of this form, then we have 

Ax.ax =Ax.(Ay.a'(y))x 

= .A.x . a'(x) =a. 

So when the term a in (i 9) is equal to a term of the mentioned form, 
then (i 9) is justified by the meaning given to A-abstraction by its defining 
equation. 

Another way of expressing (i 9) in T' is as follows: 

(i 9)' If a and b are terms not containing x free and ax= 1bx, 
then a = 1b. 

This says that two computable functionals that can be seen to have 
the same values uniformly for the same arguments are identical. 

The rule (i 9)' is not to be confused with the principle of extensionality 
in T', of which there are two versions. The principle of weak extensio
nality, first introduced by Spector 1962, is this: 

where x1, ... , Xn are variables not occurring free in a and b and such 
that the left and right hand sides in the premiss have atomic type. 
Equality in the premiss is as in section 3. 

A notion of extensionality, a =.b, mentioned for example by Kreisel 
1965, is defined as follows: (i) For terms a and b of the same atomic type 
a = .b means a = b as in section 3. (ii) Suppose that we have defined a = .b 
for terms of type a and r, then for terms a and b of type a --7-r, a =.b 
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means that for all terms c and d of type a such that c =.d we have 
ac = .bd. 

In the presence of (i 9), it is possible to derive simultaneous recursion 
in T' as in Stenlund 1971. This is needed for the Dialectica interpreta
tion of the induction axioms of intuitionistic analysis. But even with 
the weaker notion of intensional equality, without (i 9), it is possible to 
derive simultaneous recursion.1 

6. DEFINING AXIOMS AND UNIQUENESS RULES 

6.1. It is instructive to consider the relationship between the axioms 
and the inference rules of T' and the classification of axioms for theories 
in so called standard formalization. We have first the equality axioms. 
The remaining axioms fall into two groups: the non-logical and the lo
gical axioms. In T' the axioms and rules for the primitive constants play the 
role of the former, while the axioms and rules for application and 
A-abstraction play the role of the latter. As pointed out in the introduc
tion application and A-abstraction are our means for expressing the 
"logic of rules of correspondence" in T'. 

In this section we shall call attention to another classification of 
the axioms and rules of T'. This classification emphasizes the fact that 
some of the axioms and rules of T' (to the left below) express the 
defining properties of the primitive operations, while others, the 
uniqueness rules (to the right below), assert a uniqueness property of the 
primitive operations with respect to the intended interpretation. 

6.2. For the constants R0, R1 and A-abstraction the defining axioms and 
the uniqueness rules are the following: 

R0 ab0 = 1a 

R0 ab(S0 t) = 1 bt(R0abt) 

R1 ab01 = 1a 

R1 ab(S1 t) = 1 bt(Ax. R1 ab(tx)) 

(h. a(x)) b = 1 a( b) 

/0 = a, f(S0 t) = bt(ft) 
ft = R0 abt 

/01 =a, f(S1 t) = bt(Ax .f(tx)) 
fc= R 1 abc 

bx = ;(.A.x.ax)x ( f . db) 
b = 

1 
AX. ax x not ree m a an 

1 This was shown to me by Hindley, who learned it from SchUtte. 
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The defining equations to the left give the meaning to the recursion 
constants and A.-abstraction, and the uniqueness rules to the right 
assert the uniqueness of the functions defined by these operations. 

There is an analogy with the situation for systems of natural deduc
tion (cf. Prawitz 1970), where there are two rules for each primitive 
logical operation; an introduction and an elimination rule. Also in 
analogy with the situation for systems of natural deduction, the 
uniqueness rules and the defining equations may be said to be inverses 
of one another. For example, an inference by the induction rule can be 
thought of as "the inverse" of a computation according to the defining 
equation of the recursion functional R0 • 

As explained by Prawitz 1970, in systems of natural deduction an 
introduction rule for a logical operation can be interpreted as giving 
the meaning to that operation, and the corresponding elimination rule 
can be seen to be justified by this meaning. Here the analogy seems to 
end. Under the intensional interpretation of equality, it is the defining 
equations (and the formation rules) that give the primitive operations 
their meaning, and as we have already pointed out, the uniqueness rules 
assert something more of the intended interpretation. 

6.3. The defining properties of the primitive constants 00 0 S S ' 1' 0' b 

are simply those implicit in the formation rules for terms of T'. 00 is a 
constant of type 0 and S0 is a constant of type o-o. The defining 
properties are thus that 00 denotes an object of type 0 and that S0 is a 
rule that assigns objects of type 0 to objects of type 0. Their uniqueness 
properties seem to be those expressed in the third and fourth Peano 
axioms, i.e. 

...., (00 =Sot) 

S0 t = S0 t'- t = t'. 

As in the case of R0 and R1, the uniqueness properties of 00 and S0 

cannot be said to be justified by their defining properties, The 3rd and 
4th Peano axioms express something more about the intended standard 
model. The situation is similar in the case of 01 and S1• 
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7. REDUCTION RULES 

7 .1. As pointed out in the introduction, the defining equations of the 
primitive operations can be thought of as computation rules for the 
computable functionals. On the formal level these computation rules are 
represented as reduction rules. This leads to the notion of definitional 
equality: Two terms are definitionally equal if they reduce to a common 
term. 

The notions of intensional and definitional equality have usually been 
used as synonyms. We prefer here to use the latter terminology when 
we think of the defining equations as computation rules for the com
putable functionals and not only as assertions about them. As will be 
proved below, the two notions are (extensionally) equivalent. 

7.2. We describe the redexes and their corresponding contracta in the 
following table. 

Redex Contractum 

R0 ab0 a 

R0 ab(S0 t) bt(R0 abt) 

R1 ab01 a 

R1 ab(S1 t) bt(A.x. R1 ab(tx)) 

(A.x.a(x))b a( b) 

A.x.ax a 

In the last redex and in the fourth contractumit is assumed·, .as usual, 
that x is a new variable . 

When a does not reduce to a term of the form A.y.a', the reduction 
A.x.ax red. a seems not to fit in with the interpretation of the reduction 
rules as computation rules. A better name for it would perhaps be the 
simplification rule. 

A contraction of a redex in a term a is defined as usual as the replace
ment of a subterm of a which is a redex by its contractum. A term a 
reduces to a term b, in symbols a ?3 b, if b is obtained from a by repeated 
(possibly zero) contractions. A term is normal or in normal form if it 
does not contain a subterm which is a redex. 
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The redexes of the first four kinds are R-redexes in the sense of 
chapter 2. The following result is therefore proved as in chapter 2. 

7.2.1. THEOREM. (The Church-Rosser property) If a> b and 
a> c, then there is a term d such that b > d and c >d. 

From this theorem we infer the transitivity of the relation of definitional 
equality, hence we have the following result. 

7.2.2. CoROLLARY. Definitional equality is an equivalence relation. 

The following theorem shows that our notions of intensional and 
definitional equality are equivalent. 

7.2.3. THEOREM. Two terms a and bare definitionally equal if and 
only if a = 1b is derivable in T'. 

Proof. That the definitional equality of a and b implies that a = 1b 
is derivable in the equation calculus is obvious. 

The converse is proved by induction on the derivation of a =,b. In 
the cases in which the equation is derived by (i 1), (i 2) or (i 3), the result 
follows by corollary 7.2.2, and hence by the Church-Rosser theorem. 
The remaining cases follow immediately by the induction hypothesis. 

8. COMPUTABILITY AND NORMAL FORM 

8.1. Let a> b mean that a> b but a$ b. A term a is strongly 
normalitable (a is SN) if each reduction· sequence· · · 

starting with a is finite. In other words, a is SN if a is normalizable 
and each reduction sequence starting with a ends in the normal form of 
a. The uniqueness of the normal form of a normalizable term follows 
by the Church- Rosser theorem as in chapter I. 

In the type-free A.-calculus, there are terms which are normalizable 
but not SN. An example is the term 

(A.x .y)((A.x. xx)(A.x. xx)). 

-·:~ -
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All terms of T' are SN, as we shall prove now. We shall do this by 
defining what it means for a term to be computable and then prove that 

(i) 

(ii) 

each computable term is SN, 

each term is computable. 

8.2. Computability. By induction over the type r of a term a, we define 
what it means for a to be computable. . 

·8.2.1. If a has type 0, then a is computable if a is SN. 

8.2.2. If a has type I, then a is computable provided that a is SN and 
that t is computable if a . reduces to a term of the form S1 t. 

8.2.3. If a has type r~a, then a is computable if ab is a computable 
term. of typ.e a for all computable b . of type ·r. 

Remark. If a > b, and a is computable, then b is computable. This is 
obvious for terms of atomic type. For terms of higher types it follows 
from the following fact: A term a is computable if aa1 ••• an is computable 
for all computable a1, •. • , an such that aa1 ••• an has atomic type. 

Then we proceed to the proof of (i) and (ii). 

8.2.4. THEOREM. Each term of type r and of the form xa1 ••• an, 
n > 0, with .all of a10 ••• , an SN is computable, and each com
putable term oftyper is SN. 

Proof. The proof is by induction on the complexity of r. 

Case 1. r is atomic. Th.en each computable term of type r is SN by 
definition. If all of a1, ••• , an are SN, then clearly so is xa1 ••• an because 
each reduction of this term must proceed within the terms ai> ... , an. It 
can' t reduce to a term of the form S1 t, so by 8.2.1 and 8.2.2 the 
result follows. 

Case 2. Let a be a computable term of type r~a and x a variable of 
type r. By the induction hypthesis (with n = 0) x computable, and since a 
is computable, we conclude by 8.2.3 that ax is computable. By the 
induction hypothesis ax is SN and hence, so is a. 
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To prove the remaining part of the theorem, let xa1 •• • an be a term of 
type r:-->-0' with all of a1, ... , an SN. Let b a computable term of type r:. 
By the induction hypothesis b is SN. Hence, all of a1, ... , an, b are SN, so, 
applying the induction hypothesis again, we conclude that xa1 ... anb 
is computable, and by 8.2.3 so is xa1 ... an. 

This completes the proof. 

8.2.5. LEMMA. The constants Do, D1, So and s1 are computable. 

Proof. Since D0 and D1 are normal terms and the latter not of the 
form S1 t, they are computable by definition. 

To see that S0 is computable, let b be a computable term of type 0. 
By theorem 8.2.4 it follows that b, and hence S0 b is SN. By 8.2.1 this 
means that S0 b is computable and by 8.2.3 it follows that S0 is compu
table. 

The computability of S1 follows similarly using 8.2.2. This completes 
the proof. 

8.2.6. LEMMA. If a(b) is computable, then (.A.x.a(x))b is computable, 
provided that b is computable if x is not free in a(x). 

Proof. Let at> ... , an be computable terms such that 

(I) a(b)a1 ... a" 

has atomic type. Since a(b) is computable, it follows by 8.2.3 that (1) 
is computable and hence SN. The lemma will follow by 8.2.3 if we 
prove that the term 

(2) (.A.x.a(x))ba1 ... an 

is computable. If (2) reduces to a term of the form s1 t, then so does 
(I) so tis computable, and it remains only to prove that (2) is SN. Since 
(I) is SN, so are all its subterms a(b), b, a1, ... , an. and b is SN also 
if it does not occur in a. Therefore, an infinite reduction of (2) must be 
an infinite reduction of .A.x.a(x). Such a reduction must either yield a 
reduction of the form 

a(x) > a'(x) > a"(x) > ... 
but then, 

a(b) > a'(b) > a"(b) ... 
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would be an infinite reduction of a(b), which is impossible, or else, it is 

like this 

.A.x.a(x) ;;;. .A.x.ax >a'> a" ... 

with x not free in a, a', a", ... But then the reduction 

a(b);;;. a'b > a"b ... 

would be an infinite reduction of a(b), which is still impossible. This 

completes the proof. 

8.2.7. LEMMA. The constants R0 are computable. 

Proof. By 8.2.3 it is sufficient to prove that R0 abc is computable for 
all co~putable a, band c of appropriate types. We do this by induction 
on the number of suc~essor constants S0 in c. Let a1, ... , an be computable 
terms such that R0 abca1 ... an has atomic type. 

Case 1. c does not reduce to a term of the form 00 or S0 t. Then each 
reduction of R

0
abca1 .. . an must proceed within the terms a, b, c, a1, 

..., an. By theorem 8.2.4 they are all SN and hence, so is R0abca1 ... an. 
Since the latter term cannot reduce to a term of the form S1 t, it follows 
by 8.2.1 and 8.2.2 that it is computable, and by 8.2.3 so is R0 abc. 

Case 2. c reduces to D0 • If this would cause R0 abca1 ... an to have an 
infinite reduction, it would have to begin like this 

where a, b, at> ... , an reduces to a', b', a~, ... , a~, respectively, in a finite 
number of steps. Since a, a1, ... , an are all computable, so is aa1 ... a", 

and since 

it follows that a' a~ ... a~, and hence R0 abca1 ... an is SN and if it reduces 
to a term of the form S1 t, then tis computable. So if c does not reduce 
to a term of the form S0 t, it follows that R0 abc is computable, and it 
remains only to consider this case. 

Case 3. c reduces to S0 t. Since S0 t is SN, so IS t which by 8.2.1 

9 - 722416 Stenlun d 
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means that t is computable. By the induction hypothesis R0 abt is 
computable. An infinite reduction of R0 abca1 ... an would have to start 
like this 

R0 abca1 • •• On;:;;:. R0a' b' (S0 t') a~ ... a~ 

>b't'(R0 a'b't')a~ . .. a~;:;;:. . . . 

where a, b, t, al> ... , an reduce to a', b', t', a~, ... , a~, respectively, in a 
finite number of steps. Since all of b, t, R0 abt, ai> ... , an are computable 
so is bt(R0 abt)a1 ... an, and since 

bt(R0 abt)a1 ••• an;:;;:. b't'(R0 a'b't')a~ .. . a~ 

it follows that the above reduction of R0 abca1 ... an is finite and if it 
reduces to a term of the form sl t, then t is computable. 

Thus we have proved that R0 abc is computable for all computable 
a, b and c and the lemma follows. 

8.2.8. LEMMA. The constants R1 are computable. 

Proof. As in the proof of lemma 8.2.7, it is sufficient to prove that 
R1 abc is computable for all computable a, b and c of appropriate types. 
This is done by induction on the number of successors in c. The cases 
in which c does not reduce to a term of the form S1 t are exactly like 
the corresponding cases in the proof of lemma 8.2.7, so let us consider 
the case in which c reduces to a term of this form, Since c is computable 
it follows by 8.2.2 that t is a computable term of type o~ 1. The 
induction hypothesis is then that the term 

is computable for all computable e of type 0. The lemma will follow as 
lemma 8.2.7, if we prove that the reduction 

R1 abca1 • •• an;:;;:. R1 a' b' (S1 t') a~ . .. a~ 

> b't'(Ax . R1 a'b'(t'x))a~ .. . a~> .. . 

is finite and that d is computable, if it reduces to a term of the form S1 d. 
This follows clearly from the fact that 

bt(Ax.R1ab(tx ))a1 ... an ;;;:. b't'(Ax.R1 a'b'(t'x))a~ •.. a~ 

COMPUTABLE FUNCTIONALS OF FINITE TYPE 131 

if we prove that the left hand side of this relationship is a computable 
term. Now all of b, t, al> ... , an are computable, so it remains only to 
prove that Ax. R1 ab(tx) is computable. By the induction hypothesis and 

we conclude that (Ax.R1 ab(tx))e is computable for all computable e 
using lemma 8.2.6. By 8.2.3 it follows that A.x. R1 ab(tx) is computable 
and the proof is complete. 

We have proved the computability of the primitive constants and 
the variables. The computability of all terms is an immediate conse
quence of the following theorem. 

8.2.9. THEOREM. Let a(x1, ••• , Xn) be a term all of whose free 
variables are among the ones shown, and let bl> ... , bn be 
computable terms of the same types as x1, ... , Xn, respec
tively. Then a(b1, .. . , bn) is computable. 

Proof. The proof is by induction of the construction of a(x1, ... , an). 
To simplify notation we write a' for a(b1, ... , bn). 

Case I. If a(x1, ... , Xn) is a variable xt> I ~ i ~ n, then a' is b 1 and 
the result is immediate. 

Case 2. If a is a variable distinct from all of x1, ... , Xn or if a is a 
primitive constant, then a' =a and the result follows from 8.2.4, 8.2.5, 
8.2.7 and 8.2.8. 

Case 3. If a is a1 a2, then a' is a~a~. By the induction hypothesis a; 
and a~ are computable, and by 8.2.3 so is a~a~. 

Case 4. a is Ax. a1(x). By the induction hypothesis a~(b) a,iis comput
able for all computable b. Since 

(A.x. a~(x))b;:;;:. a~(b), 

the computability of A.x. a;(x) =a' follows by 8.2.6 and 8.2.3. 
This completes the proof. 

8.2.10. STRONG NORMALIZATION THEOREM. Each term is comput
able and hence, strongly normalizable. 
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8.3. Consequences. The strong normalization theorem has important 
consequences. Each term has precisely one normal form which can be 
found mechanically in a finite number of steps by reducing the term. 
Hence, it can be decided effectively whether two terms a and b are 
definitionally equal by checking whether they have the same normal 
form. Since definitional and intensional equality are equivalent relations, 
we have verified what one expects from the philosophical point of view 
of section 1.2 and 1.3: 

8.3.1. THEOREM. It is mechanically decidable whether a= 1b is 
derivable or not in the equation calculus T'. 

It is easy to see what the normal terms must look like. A term a is 
normal in one of the following cases. 

(i) a is 00 or 01, 

(ii) a is S 1 or S 1b and b is normal, i = O, 1, 

(iii) 

(iv) 

(v) 

a is xa1 ... an and a1, ... , an are normal, n ;;:;, 0, 

a is R 1a1 ... am n;;;,o, and a1, ... , an are normal terms and 
a3 is not of the form 0; or S;b, 

a is of the form J.x.a', where a' is a normal term not of 
the form bx with x not free in b. 

Since each term is strongly normalizable, we have: 

8.3.2. THEOREM. Each closed term of type 0 reduces to a numeral. 

Similarly, we have. 

8.3.3. THEOREM. Each closed term of type 1 either reduces to 01 or 
to a term of the form S1 c, where c is a closed normal term of 
type 0-+ 1. Given two terms a and b of type 1 and a numeral 
ii, it can be decided whether or not a is the n:th predecessor 
of b. 

The next theorem yields the consistency of the equality relation between 
terms of type 0 and 1. 
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8.3.4. THEOREM. Let a and b be closed terms of the same atomic 
type, then a =b is derivable in T' if and only if a= ib is 
derivable. 

Proof. a = ;b implies a = b by (e 6). If a = b has been derived without 
using (IR), then it is easy to see that a= 1b is also derivable. 

We complete the proof by showing how to remove each application 
of (IR) from a proof of an equation a= b with a and b closed. First, 
we note that if there occurs a free variable (other than as a t in the 
premiss of (IR)) in the derivation of a= b, we can replace it by a 
suitable closed term and still obtain a derivation of a = b. Hence, we 
may assume that in each application of (IR), the terms in the conclusion 
are closed. The t in the conclusion hence reduces to a numeral ii. We 
prove by induction on n that this application of (IR) can be removed. 

If n=O, then the conclusion ft=R0abt follows from the axiom 
R0 abO=a and the premiss fO = a and the fact that t=O. 

Suppose that t ;;:;, S0ii and that 

can be derived without using (IR), then so does 

bii(fii) = bii(R0 abii) = R0 ab(S0ii). 

By the second premiss of (IR), we have 

f(S0ii) = bii(fii), 

and since t = S0ii, the conclusion ft = R0 abt follows without this applica
tion of (IR) and this completes the proof. 

This theorem yields the consistency of T'. Two numerals cannot be 
proved to be equal unless they are identical. As a consistency proof of 
intuitionistic analysis (via the Dialectica interpretation), this proof is, 
of course, of no significance from the point of view of reductive proof 
theory, because the proof of the strong normalization theorem uses in an 
essential way the reasoning formalized in intuitionistic analysis with 
bar-recursion of type 0. 

The consistency of T' is of course immediate from the philosophical 
position explained in the introduction, and our purpose has not been 
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so much to establish consistency results as to analyse the computation 
rules of the computable functionals as represented by the reduction rules 
ofT'. 

8.4. As remarked in the introduction the computability method was 
introduced by Tait 1966 and 1967 a. In the latter paper, Tait proves a 
normalization theorem for the closed terms of T, extended with a 
schema of bar-recursion of type 0. The reduction relation in Tait 1967 a 
is different from ours. It is weaker than the one in section 7, and Tait 
1967 a considers only a specific deterministic way of reducing a term, 
while we have considered all possible ways of reducing terms. 

A normalization theorem for the terms of T without bar-recursion 
which also covers open terms, was proved by Sanchis 1967. 

The proof of the (strong) normalization theorem by the computability 
method can be given in different forms. The definition of computability 
can be given different but extensionally equivalent forms. We feel that 
the definition and proof of the present section have the simplest forms. 
The definition of computability reflects in a simple way the conceptual 
content of the computability notion and is largely independent of our 
particular formalism, in contrast, for example, to the notion of regula
rity in Sanchis 1967. 

A quite different normalization proof was given by Howard 1970. 
He assigns ordinals to the terms such that the normalization theorem 
follows within primitive recursive arithmetic extended by transfinite 
induction up to Bachmann's ordinal IPc(O), where c = Bn+I· 

All of the above mentioned proofs establish normalization theorems 
only, and none of their authors considers the reductions A.x.ax ;;;>a, 
where x is not free in a. 

9. INTERPRETATION OF TYPES AND TERMS 

In this section we shall introduce the notion of a structure and a model 
for T'. We consider different kinds of models for T' and prove the 
completeness of the axioms and rules for intensional equality with 
respect to the intended interpretation of application. 
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9.1. Structures. Let V be the set of all types ofT'. A structure 

forT', consists of the following things: 

9.1.1. For each -rEV a non-empty set ~T. 

9.1.2. For each-rEV, ==.,. is the identity relation on ~ .... 

9.1.3. For all -r, aE V, a mapping 

apt"-+a; ~t"-+<1 X ~T--+ ~a. 
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We will use a, b, c, .. . to denote elements of a structure, although we 
have reserved them for terms. It will be clear from the context if we are 
talking about terms or about elements of a structure. 

To simplify the notation we write 

ab for apT.-(a, b). 

We will in general also omit type superscripts. 

9.2. Combinators. To arrive at the notion of a model forT', we consider 
a structure ~ forT' satisfying the following conditions: 

9.2.1. For all -r, aE V, ~T-+<7-+T contains an element K such that for all 
aE~.,. and all bE~" we have 

Kab= a. 

(Note that this is an abbreviation of ap"-+T(ap.,..--+.,.(K, a), b)==.,. a) 

9.2.2. For all -r, a, e E V, the set ~<T-+a-+e)-+(T-+<1)-+(T-+e) contains an 
element S such that for all a E ~T-+a-+e, bE ~.,.-+a and c E ~.,. we have 

Sabc == ac(bc). 

9.2.3. The combinatory axioms of section 3.7 of chapter 1 are assumed 
to hold, when we understand K as the combinator K, S as the combi
nator S, sKK as I and juxtaposition and n-equality of chapter 1 as 
ap(a, b) and == , respectively. 


