


IX FUNCTIONS 

llot:ivat:ioa 
One common use for procedures is to take the values of some parameters and 
return in another parameter a function of these values. For instance, we 
can write a procedure that returns in Z the sum of the squares of X and Y. 
It would have the following specification: 

SU~OF_SQUARES: PROCEDURE(X,Y,Z); 
DCL (X,Y) FIXED /*/ READONLY */; 
DCL Z FIXED; 

/*/ASSUME 'l'B; 
ATTAIN Z = X*X + Y*Y; */ 

Usually the parameter used for returning the function value (Z in this 
case) serves no other purpose than to communicate the value to the calling 
procedure. This is done so frequently that a special form has been pro
vided which eliminates the need for the "storage" variable, thereby remov
ing superfluous details from the calling procedure and its proof. A 
defined function is a value-returning procedure. That is, it takes all of 
its parameters readonly, and may be used by name as an operator to build up 
expressions (either in the logic or in program statements). As an opera
tor, it gives as a value a function of its arguments which is defined by 
the ATTAIN statement. Here is how we would make SU~OF_SQUARES a function: 

SU~OF_SQUARES: PROCEDURE(X,Y) RETURNS(FIXED); 
DCL (X,Y) FIXED; 

/*/ ASSUME 'l'B; 
ATTAIN SU~OF_SQUARES(X,Y) = X*X + Y*Y; */ 

The two differences from an ordinary procedure specification are that the 
type of value returned is given, and the procedure name itself is used in 
the ATTAIN. Note that all parameters and external variables are assumed to 
be READONLY and need not be explicitly designated as such. 

In the procedure version of SUM_OF_SQUARES we would assign the desired 
value to Z and return. In the function version, we include the value as 
part of the return statement. The above specification in fact, could have 
as a program the single statement: 

RETURN(X*X + Y*Y); 

A procedure which called the SU~OF_SQUARES as a function instead of a pro
cedure could replace the two statements: 

with just 

CALL SU~OF_SQUARES(A,B,C); 
FOO = 2*C - 1 

FOO = 2*SU~OF_SQUARES(A,B) - 1; 
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As with procedures, we have proof rules for both the definition and use of 
functions. 

Iales For Using Fuact:ioas 
Defined functions are used exactly the same way that the special functions 
like ABS and MOD are. MOD(I,J), for instance, is a function with J-=0 as 
its ASSUME. Its ATTAIN is the conjunction of the assertions given in fig
ure 2 (sec. III). Reviewing briefly, there are three ways to use func
tions: 

(1) A function name may appear in a program statement as part of an 
expression to be evaluated. The ASSUME for the function must be 
proven at that point for the arguments used. 

(2) A function application may appear in assertions wherever it could 
be replaced by an arbitrary expression of the same type. For 
example, given a FIXED function F(X,Y), the following may be 
written anywhere: 

F(l,2) = F(l,2); ALL (W,Z) FIXED. F(W,Z) > 2 
=> F(W,Z) > 1 BY INTRO, INTRO, 

PROOF; 
F(W,Z) > 1 BY ARITH, F(W,Z) > 2; 
QED; 

See section 4.7 for more on the PL/CV semantics of function 
applications. 

(3) The ATTAIN of a function (for given arguments) may be asserted 
anywhere that its ASSUME (for the same arguments) is true. The 
justification is BY FUNCTION, followed by the function name and 
arguments. For instance, we may write 

0 <= MOD(I,J) < ABS(J) BY FUNCTION, MOD(I,J); 

wherever J-=0 is accessible. Similarly, we may assert 

SUM_OF_SQUARES(W,Z) = W*W + Z*Z BY FUNCTION, SUM_OF_SQUARES(W,Z); 

anywhere, since the ASSUME for this function ('l'B) is always 
true. 

As the MOD example shows, the ATTAIN of a function may do more than simply 
state what the value of the function is. Any assertion using the function 
name and/or parameters may appear in the ATTAIN. Note that, unlike pro
cedures, functions may be used via the FUNCTION rule in strictly logical 
theorems. This can often be an effective means for providing theorems with 
access to algorithmic notions of construction. 

(Functions that take BIT(*) parameters may be applied to boolean expres
sions made up of logical variables, but not to assertions. This restric
tion is to keep PL/CV a constructive logic.) 
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Yerifyiag F .. c~ioaa 
There are three differences between the proof rules for functions and for 
procedures. The first is a restriction: functions return a value and ~ 
nothin~ ~. They may not have any side effects. A side effect is 
defined as changing the value of any variable other than the functions own 
local variables. We have alreay mentioned that the parameters and EXTERNAL 
variables of a function are assumed to be readonly. In addition. the func
tion may not make any procedure calls which will produce side effects. 
(I.e. only the function's local variables may be read-write arguments to a 
procedure. and no procedure called may assign to EXTERNAL variables.) The 
motivation for this restriction comes from our desire to use function names 
as operators. If they were allowed to change their arguments. or otherwise 
alter the environment they were evaluated in. the logic for making correct 
assertions would become vastly more complicated. 

The second difference is in the rule for RETURN statements. The basic idea 
is still the same: the ATTAIN must be proven at any point where the func
tion returns. We simply have to modify what this means to account for the 
fact that a value is being returned. Let F be a function of one argument. 
X. In general. its ATTAIN condition will contain occurrences of F(X) to 
describe the value returned. When a RETURN(exp) statement is encountered 
during execution. the value of exp will be the value that is returned for 
the function. Therefore. the ATTAIN must be proven with all occurrences of 
F(X) replaced by exp. This must be done for each RETURN statement in the 
function. 

Finally. we must recognize a subtle form of recursion that can occur in 
function definitions. Any time an assertion is justified BY FUNCTION. 
F(exp). it must be the case that evaluation of F(exp) is possible at that 
point. What if an assertion in the body of F is justified this way? This 
will be correct only if the call is a proper one. but clearly it will be a 
recursive call. The rules for termination of recursive function applica
tions are the same as for procedure calls. In particular. the termination 
predicate for F(exp) must be satisfied by N-1 before any occurrence of 
F(exp) in a program statement ~ any assertion justified BY FUNCTION. 
F(exp). Note that this means that two functions may be mutually recursive 
just by mentioning each other in their proofs. without actually executing 
an expression that contains the other. (Note: it is not permitted for a 
function and a procedure to be mutually recursive.) 

The ability to recursively refer to functions in their own proofs can be 
very useful. A good example is the function FACT(X) 1 which returns the 
factorial of X as a value. There is no easy way to express the relation of 
FACT(X) to X in our assertion language without using recursion. Note that 
saying that every number less than or equal to X divides FACT(X) is not 
enough. since other numbers besides the factorial of X have that property. 
The most elegent ATTAIN for the function FACT(X) is 

X=O => FACT(X)=l & X > 0 => FACT(X) = X * FACT(X-1) 

This ATTAIN can actually be proven for a function body which proceeds in 
the straightforward iterative manner. multiplying together all the numbers 
less than X and returning the answer. The proof however. contains two uses 
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of the function rule on FACT itself. both times with arguments which are 
smaller than X. (See the last example below.) It is probably less complex 
than anything that could be done using a non-recursive ATTAIN. Moreover. 
once this description of FACT is shown. other desirable properties of the 
function may be proven by induction (for example 1 the fact that FACT(X) is 
divisible by all numbers less than or equal to X). 

Ex-plea 
Here is the proof for the built-in function ABS 1 which returns the absolute 
value of its argument: 

ABS: PROCEDURE(X) RETURNS(FIXED); 
DECLARE X FIXED I*: READONLY *I; 
1*1 ASSUME 'l'B; 
1*1 ATTAIN X >= 0 => ABS(X) = X1 

1*1 X <= 0 => ABS(X) = -X. 
1*1 X 0 => ABS(X) = 0; 

1*1 ATTAIN 'O'B; 
SELECT; 

WHEN(X > 0) 
DO; 
1*1 X >= 0 BY ARITH. X > O; 
1*1 -(X <= 0) BY ARITH. X > 0; 
1*1 -(x = 0) BY ARITH. X > 0; 
RETURN(X); 
END; 

WHEN(X < 0) 
DO; 
1*1 -(x >= 0) BY ARITH. X < 0; 
1*1 -(x = 0) BY ARITH. X < 0; 
1*1 X <= 0 BY ARITH 1 X < 0; 
RETURN( -X); 
END; 

OTHERWISE 
DO; 
1*1 X = 0 BY ARITH. -(x< 
1*1 X >= 0 BY ARITH 1 X 
1*1 X <= 0 BY ARITH 1 X 
1*1 -X = 0 BY ARITH. X 
RETURN(X); 

0). -<x > O); 
0; 
O; 
o. *• -1 < 0; 

END; 
END; 
END ABS; 

*I 
*I 
*I 
*I 

*I 

*I 
*I 
*I 

*I 
*I 
*I 

*I 
*I 
*I 
*I 

The built-in function EXP contains a recursive call to itself in the pro
cedure body. (It returns as a value B raised to the power E.) 

EXP: PROCEDURE (B 1 E) RETURNS(FIXED); 
DECLARE (B. E) FIXED I*: READONLY *I; 
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1*1 ASSUME B -= 0 & E >= O; 
1*1 ARBITRARY D FIXED WHERE D > E; 
1*1 ATTAIN E = 0 => EXP(B. E) = 1. 

*I 

1*1 E >= 1 => ((EXP(B. E) B * EXP(B. E - 1)) & 
1*1 (EXP(B. E) I B = EXP(B. E- 1))); 

1*1 -(o > E) BY ARITH. E >= 0; 

1*1 ATTAIN 10 1B; 
IF E = 0 
THEN DO; 

1*1 -(E >= 1) BY ARITHo E 0; 
RETURN(!); 
END; 

ELSE DO; 

*I 

1*1 E >= 1 BY ARITH. E >= O. -(E 0); *I 
1*1 D - 1 > E - 1; *I 
1*1 E - 1 >= 0 BY ARITH. E >= 1; *I 
1*1 B <= 0 I B >= 0 BY ARITH; *I 
1*1 ABS(B) > 0 BY CASES. B <= 0 I B >= O. *I 
1*1 PROOF; *I 
1*1 CASE B <= 0; *I 
1*1 ABS(B) = -B BY FUNCTION. ABS(B); *I 
1*1 -B > 0 BY ARITH. B <= O. B -= 0; *I 
1*1 CASE B >= 0; *I 
I* I ABS(B) = B BY FUNCTION. ABS(B); *I 
1*1 B > 0 BY ARITH. B >= O. B -= 0; *I 

*I 
*I 

*I 
*I 

1*1 QED; *I 
1*1 B * EXP(B.E-1) = EXP(B.E-l)*B + 0; *I 
1*1 MOD_RESULT: ALL (Q. R) FIXED • *I 
1*1 ((B*EXP(B.E-1) = B*Q+R & O<=R<ABS(B*EXP(B.E-1))) *I 
1*1 => R = MOD(B*EXP (B.E-1) • B)) *I 
1*1 BY FUNCTION. MOD(B*EXP(B.E-1). B); *I 

RETURN(B * EXP(B. E-1)); 
END; 

END EXP; 

Here is a proof of the factorial function. which was given as an example of 
a function with recursive reference to itself in an assertion. 

FACT: PROCEDURE(X) RETURNS(FIXED); 
DECLARE X FIXED; 
1*1 ASSUME X>=O; 

ARBITRARY N FIXED WHERE X < N; 
ATTAIN (X=O => FACT(X)=l) & (X>O => FACT(X)=X*FACT(X-1)); *I 

DECLARE (PROD.I) FIXED; 
1*1 -(x < 0) BY ARITH. X>=O; *I 

PROD = 1; 

1*1 l>X => ( (X>O => PROD=X*FACT(X+l-2)) & 
(X=O => PROD = 1)) BY INTRO. 

PROOF; 

165 

-(X>O) BY ARITH. l>X; 
PROD = 1; 

QED; *I 
1*1 (X+l)-1 = X BY ARITH; *I 
1*1 -(0>0) BY ARITH; *I 

DO I = 1 TO X BY 1; 
1*1 ASSUME (I-1=0 => PROD=l) & (I-1>0 => PROD=(I-l)*FACT(I-2)); *I 
1*1 X>=l BY ARITH. X>=I>=l; *I 
1*1 I-1=0 I I-1>0 BY ARITH. I>=l.-.1=1; *I 
1*1 PROD*I = I*FACT(I-1) BY CASES. I-1=0 I I-1>0 0 

PROOF; 
CASE I-1=0; 

0>=0 BY ARITH; 
1 < N BY ARITH. X<N. X>=l; 
0 < N-1 BY ARITH. l<N 0 -. 1=1; 
FACT(O)=l BY FUNCTION. FACT(O); 
I=l BY ARITH 0 I-1=0. +0 1=1; 

CASE I-1>0; 
I-1 >= 0 BY ARITH. I-1>0; 
I < N BY ARITH0 X<N. X>=I; 
I-1 < N-1 BY ARITH. I<N. -. 1=1; 
FACT(I-l)=(I-l)*FACT(I-2) BY FUNCTION. FACT(I-1); 
I>O BY ARITH. I-1>0; 
PROD*I = I*FACT(I-1) BY ARITH. PROD=FACT(I-1). *• I>O; 

QED; *I 

PROD = PROD*I; 

1*1 -(I=O) BY ARITH. I>=l; *I 
1*1 (I+l)-1 = I BY ARITH; 

(I+l)-2 = I-1 BY ARITH; *I 
1*1 (I=O => PROD=l) & (I>O => PROD=I*FACT(I-1)); *I 

END; 

1*1 (X=O => PROD=l) & (X>O => PROD=X*FACT(X-1)); *I 

RETURN(PROD); 
END; 
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1*1 ASSUME B -= 0 & E >= O; 
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*I 
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*I 
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*I 
*I 

*I 
*I 
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FACT(I-l)=(I-l)*FACT(I-2) BY FUNCTION. FACT(I-1); 
I>O BY ARITH. I-1>0; 
PROD*I = I*FACT(I-1) BY ARITH. PROD=FACT(I-1). *• I>O; 

QED; *I 

PROD = PROD*I; 

1*1 -(I=O) BY ARITH. I>=l; *I 
1*1 (I+l)-1 = I BY ARITH; 

(I+l)-2 = I-1 BY ARITH; *I 
1*1 (I=O => PROD=l) & (I>O => PROD=I*FACT(I-1)); *I 

END; 

1*1 (X=O => PROD=l) & (X>O => PROD=X*FACT(X-1)); *I 

RETURN(PROD); 
END; 
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10.1 Introduction 

Rules for introducing recursive and nonrecursive function defini
tions are nearly identical to the corresponding rules for recursive and 
nonrecursive procedures. However. since functions play an entirely dif
ferent role in the logic than do assignments and their generalization to 
procedures. the rules for using defined functions have an entirely dif
ferent character than the rules for using procedures. The first differ
ence is that functions affect the most basic level of the logic. the 
predicate calculus. Secondly. all arguments to functions (including 
external variables) are readonly. so the intricate problem of substitu
tion for bound variables does not arise. Thirdly. defined functions 
occur in every type of expression. so their use complicates every rule 
which mentions expressions. that is every rule except the goto and label 
rules. 

10.2 Syntax 

f: PROCEDURE(parameter_list) RETU~S(type) [RECURSIVE]; 
{declaration. define_statement} 
ASSUME assertion; 
[ARBITRARY variable FIXED WHERE assertion;] 

heading ATTAIN ass*rtion; 
proof_stmt * 
declaration 
argument 
END f; 

Note 1: f is any label. It is the function name. The attain statement 
may involve f itself 

Note 2: A function in PL/CS may not contain input/output statements. or 
calls to procedures which may modify either EXTERNAL variables or the 
function's parameters. This is to guarantee that function evaluations 
produce no side effects. 

Note 3: External variables and all parameters are readonly. 

10.3 Proof Rules 

In order to introduce a set of mutually recursive function defini
tions. we must know that each halts on its assumed domain. This is 
demonstrated almost exactly as in the case of procedures. 
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RECURSIVE FUNCTION INTRODUCTION 

f: PROCEDURE(v); 

v READONLY 

x EXTERNAL 

ASSUME INf(v.x); 

ARB d FIXED WHERE Tf(d.v.x); 

ATTAIN OUTf(v.x. f(v)); 

"'Tf(O.v.x); 

T (d-1. u.x). IN (u 0 x) g g 

before any occurrence 

of g(u) for any g in 
the set of mutually 
recursive definitions 

'O'B 
END f; 

l OUTf(v.x.exp) before 

each occurrence of 
RETURN(exp) 

Note. not all externals need be mentioned in INf. INg. 

A function definition in PL/CV comprises an algorithm and a lemma 
about the defined function. This lemma has the form 

where v can be considered universally quantified (and x are parameters 
of definition). The lemma is proved by a form of induction. so we call 
it the recursive function induction nk· The invocation rule is simply 
called function ~ invocation. 
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FUNCTION LEMMA INVOCATION 

f: PROCEDURE(v) RETURNS(atype); 

v READONLY; 

x READONLY EXTERNAL; 

ASSUME INf(v.x); 

ARBITRARY d FIXED WHERE Tf(d.v.x); 

ATTAIN OUTf(v.x.f(v)); 

ENP f 

For completeness we also need the rule 

RETURN RULE 

RETURN(exp) 
A 

SOME m FIXED .m>=O&Tf(m.u.x); 

BY FUNCTION. f(u); 


