
��� Dependent types and modules

We will be able to de
ne modules and abstract data types by extending the existing

types in a simple but very expressive way � using so�called dependent types�

dependent product

Suppose you are writing a business application and you wish to construct a type

representing the date�

Month � f�� � � � � �g

Day � f�� � � � � ��g

Date � Month �Day

We would need a way to check for valid dates� Currently� h� ��i is a perfectly legal

member of Date� although it is not a valid date� One thing we can do is to de
ne

Day��	 � f�� � � � � ��g

Day�	 � f�� � � � � �g

���

Day��	 � f�� � � � � ��g

and we will now write our data type as

Date � m � Month�Day�m��

We mean by this that the second element of the pair belongs to the type indexed by

the �rst element� Now� h	� 	
i is a legal date since 	
 � Day�	�� and h	� ��i is illegal

because �� �� Day�	��

Many programming languages implement this or a similar concept in a limited way�

An example is Pascals variant records� While Pascal requires the indexing element to

be of scalar type� we will allow it to be of any type�

We can see that what we are doing is making a more general product type� It is very

similar to A�B� Let us call this type prod�A�x�B�� We can display this as x � A�B�

The typing rules are�

E � a � A E � b � B�a�x�

E � pair�a� b� � prod�A�x�B�

E � p � prod�A�x�B� E� u � A� v � B�u�x� � t � T

E � spread�p�u� v�t� � T

Note that we havent added any elements� Weve just added some new typing rules�

dependent functions

If we allow B to be a family in the type A � B� we get a new type� denoted by

fun�A�x�B�� or x �A� B� which generalizes the type A� B� The rules are�

E� y �A � b�y�x� � B�y�x�

E � ��x�b� � fun�A�x�B�
new y

E � f � fun�A�x�B� E � a � A

E � ap�f � a� � B�a�x�

Example � � Back to our example Dates� We see that m �Month � Day�m� is just

fun�Month�m�Day�� where Day is a family of twelve types� And ��x�maxday�x�� is

a term in it�


