
CS 6110/6116 Spring 2012: Problem Set 3

Problem Set 3 Due Friday Mar 8
CS6116 students should solve Problems 2 and 5

Problem 1
Revisiting Euclid’s Theorem in Prim Rec Arith.

Euclid’s Theorem symbolically:

∀a, b :N.∃ d :N.div(d, a) & div(d, b) & ∀z :N.(div(z, a) & div(z, b) ⇒ z ≤ d)

If we let div(x, y) = Ey
k(k ∗ x) = y, then using Goodstein’s notation, Euclid’s Theorem is

An
a(A

a
b (E

a
d(div(d, a) & div(d, b)))) & An

z (A
n
a(A

a
b (div(z, a) & div(z, b)) ⇒ (z .− d = 0)))

(a) The key step in proving this theorem is witnessing Ea
d . A function gcd(a, b) computing the

greatest common divisor is a witness for the existential quantifier. Write a primitive recursive
function to compute gcd.

(b) Write a while program to compute gcd and add assertions that document the code and provide
a basis for proving that the program is correct.

(c) Prove that the while program is correct either using the structural operational semantics or the
Binary Relation Semantics — both in CS6110 2010 Lecture 17 posted with Monday’s lecture.

(d) Sketch a Hoare Logic asserted program total correctness proof.

Problem 2
Define the integer square root of a non-negative number n to be the least non-negative number r
such that r2 ≤ n < (r + 1)2. Call this relation Root(r, n).

(a) Write an IMP program to compute r.

(b) Prove that your program is totally correct, either using asserted programs with a termina-
tion predicate (see notes on PL/CV) or using structured operational semantics or Relational
Semantics (on-line notes for Lect 16) or positional semantics.

1



CS 6110/6116 Spring 2012: Problem Set 3

Problem 3
Write a careful proof using Relational Semantics, that the Hoare while rule is valid for partial
correctness.

Problem 4
Pick an imperative programming language that you know well (e.g. Java, Python, C, C++, etc.)
and explain at least four caveats that need to be stated in order to make the Hoare assignment
rule valid.

Problem 5

(a) Define a function λ(x.big(x)), related to the functions fn in Def 3.2 page 3 of Meyer and
Ritchie’s paper, which is not Loop computable, thus not primitive recursive.

(b) Sketch a proof that λ(x.big(x)) is not Loop computable.

(c) For extra credit, write the continuation passing form of this function.

Problem 6 - More Extra Credit
Write your intuitive explanation of why continuation passing computations are tail recursive.

2


