Csc o/l
Spring RolR

Solutwas 4o Selectel
Preblems Scom PSS -1 ;

Problem 4

Adding the fiz operator to the A-calculus, we get expressions of the form:

e—z | Xz.e) | ap(e;e) | fiz(e)

We want to define fiz in such a way that
fiz(A(£.0)) L bl fiz(Af.b)/f]

But we can see that this is just the same as ap(A(£.b), fiz(Af.b). By the definition of ap, fix(Af.b) will
be substituted for f in b, so this will evaluate exactly as specified by the evaluation rule. Perhaps we can
define in general

fiz(t) = ap(t; fiz(t))

- In the case of variables z, fiz(z) will diverge, which is appropriate since it doesn’t make sense to take the fix-
point of just a variable. Also, with this definition of fiz, fiz(ap(t1,t2)) will be ap(ap(ty, ts), fiz(ap(t1,t2))).
So, if ap(t1, t2) evaluates to a A abstraction, then this defintion will satisfy the evaluation rule, and if it eval-
uates to a variable, it will diverge. However, we can see that rule will diverge with a call-by-value evaluation
strategy, but since this is just abstract A-calculus, we can say that if there is a sequence of S-reductions that
converge to a value, then with this definiton of fiz, we have defined a superset of the A-calculus such that
fiz obeys the evaluation rule given above.

Problem 5

First, I will give a A-expression representing add assuming that there is recursion, and then I will transform
it into a solution that uses the fixpoint combinator and the notation from class. I am assuming that we have
the expression id = \z.z.

First I will define a A-expression that takes in an integer a and returns a new function that takes in an
integer b and returns a + b.

add = Aa.case(a; id; (At.Ab.S((add t)b)))

It is clear that this expression expresses the correct idea. If a is 0, it simply returns the identity function,
since 0+ b =b. If a > 0, it returns a function that takes in an integer b, applies add (a — 1), to it, and then
returns the successor of that.

This expression actually does not converge because add is unbound in the body, we must use the fiz
expression so that we are able to use recursion.

add = fiz(\f.\a.case(a;id; (At.Ab.S((ft)b))))

This add function is actually a lambda expression that is essentially equivalent to Aa.Ab.a + b since add
is an expression that takes in an integer a and returns a function that takes in another integer b and returns
a+ b. So, we can define

add, = Am.An.(add m)n

But since add,, is just an n-expanded version of add, it is clear to see that add is the addition expression
we were trying to find.
In the notation used in the course notes

add = fiz(A(fA(a.case(a; id; (A(¢-A(0-S(ap(ap(f;1);6)))))))))
Now, to define the multiplication expression, I will assume that we have an expression Z = X\z.0. This is
a function that ignores its argument and returns 0.
Following in the same vein as add, we can define mul as

mul = fiz(\f.Aa.case(a; Z; (At.\b.(add b)((f1)d))))

This is similar to add. The expression takes in an integer, if the integer is 0 then it returns a function
that ignores its input and returns 0 (0-b = 0), and if the integer is greater than 0, it returns a function that
takes in another integer, multiplies it by a — 1, and adds b to it. Thus, this is an expression that takes in 2
integers, and returns their product.

Exponentiation is a little bit tricker than mul since we want to do the same thing as in mul except flip
the arguments. Since the special case is when the second argument is 0. So, we will do much the same thing
as in mul, except we will flip the order of the arguments.

pow’ = fiz(Af.da.case(a; (Az.S(0)); (At.Ab.(mul b)((ft)b))))
The problem with pow’ is that pow’ a b= b*. We can fix this by defining

pow = Aa.\b.pow’ b a

Now we have a working exponentiation function.
Just for fun, here is the Haskell code I used to check whether the expressions I defined above actually
perform correctly.

alcase 0 a b = a
alcase x a b =b (pred x)
fix f =1 (fix f)

add :: Integer —> Integer —> Integer
add = fix (\f = \a —> alcase a id (\t = \b —> succ ((f t) b)))

mul :: Integer —> Integer —> Integer
mul = fix (\f = \a —> alcase a (comst 0) (\t = \b —> (add b) ((f t) b)))

?

pow Integer —> Integer —> Integer
pow’ = fix (\f — \a —> alcase a (comst 1) (\t —> \b —> (mul b) ((f t) b)))

pow = flip pow’ — flip f=\z y—> fyz

