CS 6110 Lecture 32 Propositions as Types 17 April 2009

Lecturer: Andrew Myers

1 Intuitionistic Logic and Constructive Mathematics

It turns out that there is there is a deep connection between the type systems we have been exploring for the
lambda calculus, and proof systems for a variety of logic known as intuitionistic logic. Intuitionistic logic is the
basis of constructive mathematics, which takes a more conservative view of truth than classical mathematics.
Constructive mathematics is concerned less with truth than with provability. Its main proponents were
Kronecker and Brouwer around the beginning of the last century. Their views at the time generated great
controversy in the mathematical world.

In constructive mathematics, not all deductions of classical logic are considered valid. For example,
to prove in classical logic that there exists an object having a certain property, it is enough to assume
that no such object exists and derive a contradiction. Intuitionists would not consider this argument valid.
Intuitionistically, you must actually construct the object and prove that it has the desired property.

Intuitionists do not accept the law of double negation: P «» == P. They do believe that P — ——=P, that
is, if P is true then it is not false; but they do not believe =—P — P, that is, even if P is not false, then
that does not automatically make it true.

Similarly, intuitionists do not accept the law of the excluded middle PV —P. In order to prove PV —P,
you must prove either P or =P. It may well be that neither is provable, in which case the intuitionist would
not accept that PV —-P.

For intuitionists, the implication P — @ has a much stronger meaning than merely =PV @, as in classical
logic. To prove P — @), one must show how to construct a proof of @) from any given proof of P. So a proof
of P — @ is a (computable) function from proofs of P to proofs of Q. Similarly, to prove P A @, you must
prove both P and @; thus a proof of P A @ is a pair consisting of a proof of P and a proof of Q.

1.1 Example

Here is an example of a nonconstructive proof, which would not be accepted by an intuitionist.

Theorem There exist irrational numbers a and b such that a® is rational.

Proof. Either \@ﬂ is rational or not. If it is, take a = b = /2 and we are done. If it is not, take a = \/5\/5
and b = v/2; then o’ = (\/ﬁ\ﬁ)‘/5 = \/52 = 2, and again we are done. O

Now an intuitionist would not like this, because we haven’t actually constructed a definite ¢ and b with
the desired property. We have used the law of the excluded middle, which is cheating.

2 Syntax
Syntactically, formulas ¢, 1, ... of intuitionistic logic look the same as their classical counterparts. At the
propositional level, we have propositional variables P, @, R, ... and formulas

¢ = T | L | P | d1=>0¢2 | &1V | o1 NP2 | —0.

Here T is “true” and 1 is “false”. We might also add a second-order quantifier VP ranging over propositions
P:

¢ u= - | VP.¢.

3 Natural Deduction (Gentzen, 1943)

Intuitionistic logic uses a sequent calculus to derive the truth of formulas. Assertions are judgements of the
form ¢1,...,¢, F ¢, which means that ¢ can be derived from the assumptions ¢1, ..., ¢,. If - ¢ without
assumptions, then ¢ is a theorem of intuitionistic logic. The system is called natural deduction.

As we write down the proof rules, it will be clear that they correspond exactly to the typing rules of the
pure simply-typed A-calculus A~ (and with quantifiers, System F). We will show them side by side. There
are generally introduction and elimination rules for each operator.

intuitionistic logic A7 or System F type system
(axiom) T, ¢k o e:7ha:7
(—-intro) Lok Iz:oke:T
—_—— —_—
F'Fop=19 F'F(Mz:0e):0—T
) F'E¢gr=¢2 T'Ey I'tey:o—7 Thej:o
(—-elim)
F}—d)g Fl—(eoel):T
(A-intro) T'kFe TH9y I'kFei:o T'hey: T
THIREO oAy Tk (e1,e9):0%T
. oAy TEOAY I'te:ox7 The:ox*xT
(A-elim)
I'-o¢ 'y I'F#le:0c T FH#H2e:71
) ko 'k I'Fe:o I'kFe:7
(V-intro) - _
'covy TrFHoVY 'kinl,,,e:oc+7 Thinry,,e:o+7
(V-clim) 'tovy THFop—x T'HFY—x Thre:o+7 Tixiokbe:p T,y:Thkex:p
'y It case ey of x.eq | y.ea:p
I, PH A o;TTFe: FV (T
(V-intro) ILPFo ,o;The:r ag¢ FV(D)
-vP.¢ A;TH(Aace) :Va.r
(V-clim) ''EVP.¢ A;ThHe:Va.r Abo
I'-¢{y/P} A;TFH(eo):m{c/a}

The elimination rule for = is often called modus ponens.

4 The Curry—Howard Isomorphism

The fact that propositions in intuitionistic logic correspond to types in our A-calculus type systems is known
as the Curry—Howard isomorphism or the propositions-as-types principle. The analogy is far-reaching:

type theory logic
T type ¢ proposition
7 inhabited type ¢ theorem
e well-typed program m proof
— function space — implication
* product A conjunction
4+ sum V disjunction
V type quantifier V 2nd order quantifier
B inhabited type T truth
0 uninhabited type 1 falsity

A proof in intuitionistic logic is a construction, which is essentially a program (A-term). Saying that a
proposition has an intuitionistic or constructive proof says essentially that the corresponding type is inhabited
by a A-term. Since System F is sound and strongly normalizing, that term will evaluate to a value of the
same type.

If we are given a well-typed term in System F or A7, then its proof tree will look exactly like the proof
tree for the corresponding formula in intuitionistic logic. This means that every well-typed program proves
something, i.e. is a proof in constructive logic. Conversely, every theorem in constructive logic corresponds
to an inhabited type. Several automated deduction systems (e.g. Nuprl, Coq) are based on this idea.

5 Theorem proving and type checking

We have seen that type inference is the process of inferring a type for a given A-term. Under the Curry-
Howard isomorphism, this is the same as determining what theorem a given proof proves. Theorem proving,
on the other hand, is going in the opposite direction: Given a formula, does it have a proof? Equivalently,
given a type, is it inhabited?

For example, consider the formula expressing transitivity of implication:

VP,Q,R. (P—=Q)N(Q@—R)) — (P—R)
Under the Curry—Howard isomorphism, this is related to the type
Va, B,v. (@ = B) = (B—17) — (a—7).
If we can construct a term of this type, we will have proved the theorem in intuitionistic logic. The program

Ao, B,7.Ap: (o — B) % (B — 7). Az : a. (#2p) ((#1p))

does it. This is a function that takes a pair of functions as its argument and returns their composition. The
proof tree that establishes the typing of this function is essentially an intuitionistic proof of the transitivity
of implication.

Here is another example. Consider the formula

VP,Q.R.(PAQ —R) < (P—Q—R)

The double implication «» is an abbreviation for the conjunction of the implications in both directions. It
says that the two formulas on either side are propositionally equivalent. The typed expressions corresponding
to each side of the formula above are

axf —y a— [—n.

We know that any term of the first type can be converted to one of the second by currying, and we can go
in the opposite direction by uncurrying. The two A-terms that convert a function to its curried form and
back constitute a proof of the logical statement.

6 Uninhabited types

Since the proposition L is not provable, it follows that if it corresponds to a type 0, that type must be
uninhabited: there is no term with that type. Of course, L is not the only uninhabited type; for example,
the type Va.« also corresponds to logical falsity and must be uninhabited as well.

Note that we can produce terms with these types if we have recursive functions, as in the following term
with type 0:

(rec f: int—0. Ax: int. f(x)) 42

However, the typing rule for recursive functions corresponds to a logic rule that makes the logic incon-
sistent: it assumes what it wants to prove!

Ny:t—7,x:7ke: 7 o= ¢, 0 ¢
Ptrecy:r — 7' e:ite:7— 71 k¢=¢

Thus, we can think of 0 as the type of a term that doesn’t actually return to its surrounding context.

7 Continuations and negation

What is the significance of negation? We know that logically —¢ is equivalent to ¢ = L, which suggests
that we can think of —¢ as corresponding to a function 7 — 0. We have seen functions that accept a type
and don’t return a value before: continuations have that behavior. If ¢ corresponds to 7, a reasonable
interpretation of —¢ is as a continuation expecting a 7. Negation corresponds to turning outputs into inputs.

As we saw above with currying and uncurrying, meaning-preserving program transformations can have
interesting logical interpretations. What about conversion to continuation-passing style? We represent a
continuation k expecting a value of type 7 as a function with type 7 — 0.

We can then define CPS conversion as a type-preserving translation [I' - e : 7]. It is type-preserving
in the sense that a well-typed source term (I' F e : 7) translates to a well-typed target term: G[I'] F [I" -
e : 7] : T[r]. In this case the translation of a typing context simply translates all the contained variables:
Gley:m, o yxn:mn] = x1: T[], -y 2n: T [ms]. The soundness of the translation can be seen by induction
on the typing derivation.

[T,z:tkxz:7] = M:T[r] = 0.k
[CEAx:iTe:m— 1] MNe:T[r = 7] = 0.k M T[7'] = 0. X&:T[7].[TC,z:7 e : T']K)
[T teer:7] Me: T[] = 0.[Ckey:7 = 7NN T[r = 7. [T Fe:7](Av:T[r]. f k v))

To make this type-check, we define the type translation 7[-] as follows:

T[B] = B
Tlr—7] = (T[] =0 — (T[7] —0)

Notice that the logical interpretation of the translation of a function type corresponds to the use of the
contrapositive: (¢ =) = (- = —9¢).

By induction on the typing derivation, we can see that CPS conversion converts a source term of type
7 into a target term of type (7[r] — 0) — 0. Since programs correspond to proofs, CPS conversion shows
how to convert a proof of proposition ¢ into a proof of proposition —=—¢. In other words, CPS conversion
proves the admissibility in constructive logic of the rule for introducing double negation:

¢
-

(DNI)

However, we are unable to invert CPS translation, and similarly we are unable (constructively) to remove
double negation.

8 Other logics

If 2nd-order constructive predicate logic corresponds to System F, do other logics correspond to new kinds
of programming language features? This has been an avenue of fruitful exploration over the last couple
of decades, with programming-language researchers deriving insights from classical logic, higher-order, and
linear logics that help guide the design of useful language features.

