
CS 6110 Lecture 30 Let-Polymorphism and System F 13 April 2009
Lecturer: Andrew Myers

1 Type schemas

We saw last time that we could describe type inference by writing typing rules that introduce explicit type
variables T to solve for:

Γ, x :τ ` x : τ Γ ` b : B

Γ ` e0 : τ0 Γ ` e1 : τ1 τ0 = τ1 → T

Γ ` e0 e1 : T

Γ, x :T ` e : τ ′

Γ ` λx. e : T → τ ′

Γ ` e1 : τ1 Γ, x :τ1 ` e2 : τ2

Γ ` let x = e1 in e2

Γ, x :T1, y :T1 → T2 ` e : τ ′ τ ′ = T2

Γ ` rec y. λx. e : T1 → T2

This simple type inference mechanism does not result in as much polymorphism1 as we would like. For
example, consider a program that binds a variable f to the identity function, then applies it to both an int
and a bool:

let f = λx. x in
if (f true) then (f 3) else (f 4) (1)

The type system above will find that the function f has some type T → T , which means that it can
act as if it had this type for any T . However, when the type checker encounters the application to true, it
decides T = bool first and says that the function is of type bool → bool. It then gives a unification error
when it sees the int parameters 3 and 4. We would like f to be polymorphic, having type bool → bool
when applied to a bool parameter and type int → int when applied to an int parameter.

The various versions of ML can do this. The trick is to bind variables like f not to types, but rather to
type schemas. A type schema σ is a pattern for a type, which can mention type parameters α:

σ ::= ∀α1, . . . , αn .τ (n≥0)

The idea is that if a variable has a type schema mentioning type parameters α1, . . . , αn, it is bound to a
term that can act as though it has any type that looks like τ with the parameters αi replaced by arbitrary
types τ1, . . . , τn. For example, we give the variable f the type schema ∀α.α → α, and the type of the K
combinator λxy. x (a.k.a. FALSE) is

∀α.∀β .α → β → α.

1.1 Inferring type schemas

To incorporate type schemas into the type system, we extend Γ to bind variables to type schemas:

Γ = x1 :σ1, . . . , xn :σn

Then the typing rule for variables instantiates the variable’s type by replacing type parameters α with
types. To make this work with type inference, these types are fresh type variables to be solved for:

Γ, x :∀α1, . . . , αn .τ ` x : τ{T1/α1, . . . , Tn/αn}
(instantiation)

We extend the typing rule for let to correspondingly generate type schemas by generalizing over type
parameters that appear only in the type of e1 (that is, do not appear in Γ):

1Greek for “many shapes”

1

Γ ` e1 : τ1 Γ, x :∀α1, . . . , αn .τ1 ` e2 : τ2 αi 6∈ FTV (Γ) i∈1..n

Γ ` let x = e1 in e2 : τ2
(generalization)

How are the parameters αi chosen? The algorithm is to type-check e1 using type variables as above.
However, once the type τ1 is found, and unification is used to solve all equations in the derivation of
Γ ` e1 : τ1, any unsolved type variables T that are not constrained by appearing elsewhere in the program
could be replaced by any type. Therefore, we replace each such type variable in τ1 with a corresponding
type parameter α. While it doesn’t in principle hurt to have extra type parameters, the usual approach is
to generate a type parameter for each unsolved T that appears in τ1 but not in Γ.

1.2 Example

Here is a derivation exposing the polymorphic type of K in this system:

x :α, y :β ` x : α

x :α ` λy. x : β → α

` λx. λy. x : α → β → α
· · ·

k :∀α, β .α → β → α ` e2 : τ2

` let k = λx. λy. x in e2 : τ2

The type inference algorithm would proceed by computing a type T1 → T2 → T1 for the variable k.
Because neither T1 nor T2 would be mentioned in the typing context, it would replace them with the type
variables α and β and give k the type schema ∀α.∀β .α → β → α when type-checking e2.

1.3 Limitations of let-polymorphism

The type systems of ML and Haskell are based on let-polymorphism. We previously considered let x =
e1 in e2 to be equivalent to (λx. e2) e1, but in SML, the former may be typable in some cases when the
latter is not, e.g.:

- let val f = fn x ⇒ x in if (f true) then (f 3) else (f 4) end;
val it = 3 : int
- (fn f ⇒ if (f true) then (f 3) else (f 4)) (fn x ⇒ x);
stdIn:17.27-17.32 Error: operator and operand don’t agree [literal]

operator domain: bool
operand: int
in expression:

f 3
stdIn:17.38-17.43 Error: operator and operand don’t agree [literal]

operator domain: bool
operand: int
in expression:

f 4

2 System F

If we consider type schemas to be regular types, we get the language System F, introduced by Girard in
1971. This lets us pass polymorphic terms uninstantiated to functions.

In the Church-style simply-typed λ-calculus, we annotated binding occurrences of variables with their
types. The corresponding version of the polymorphic λ-calculus is called System F. Here we explicitly
abstract terms with respect to types and explicitly instantiate by applying an abstracted term to a type.
We augment the syntax with new terms and types:

e ::= · · · | Λα. e | e[τ] τ ::= b | τ1 → τ2 | α | ∀α.τ

2

where b are the base types (e.g., int and bool). The new terms are type abstraction and type application,
respectively. Operationally, we have

(Λα. e)[τ] −→ e{τ/α}.

This just gives the rule for instantiating a type schema. Since these reductions only affects the types, they
can be performed at compile time.

The typing rules for these constructs need a notion of well-formed type. We introduce a new environment
∆ that maps type variables to their kinds (for now, there is only one kind: type). So ∆ is a partial function
with finite domain mapping types to {type}. Since the range is only a singleton, all ∆ does for right now is
to specify a set of types, namely dom(∆) (it will get more complicated later). As before, we use the notation
∆, α : type for the partial function ∆[type/α]. For now, we just abbreviate this by ∆, α.

We have two classes of type judgments:

∆ ` τ : type ∆; Γ ` e : τ

For now, we just abbreviate the former by ∆ ` τ . These judgments just determine when τ is well-formed
under the assumptions ∆. The typing rules for this class of judgments are:

∆, α ` α ∆ ` b
∆ ` σ ∆ ` τ

∆ ` σ → τ

∆, α ` τ

∆ ` ∀α.τ

Right now, all these rules do is use ∆ to keep track of free type variables. One can show that ∆ ` τ iff
FV (τ) ⊆ dom(∆).

The typing rules for the second class of judgments are:

∆ ` τ
∆; Γ, x : τ ` x : τ

∆; Γ ` e0 : σ → τ ∆; Γ ` e1 : σ

∆; Γ ` (e0 e1) : τ

∆; Γ, x : σ ` e : τ ∆ ` σ

∆; Γ ` (λx : σ. e) : σ → τ

∆; Γ ` e : ∀α.τ ∆ ` σ

∆; Γ ` (e σ) : τ{σ/α}
∆, α; Γ ` e : τ α /∈ FV (Γ)

∆; Γ ` (Λα. e) : ∀α.τ

One can show that if ∆; Γ ` e : τ is derivable, then τ and all types occurring in annotations in e are
well-formed. In particular, ` e : τ only if e is a closed term and τ is a closed type, and all type annotations
in e are closed types.

3

