1 Type schemas

We saw last time that we could describe type inference by writing typing rules that introduce explicit type variables T to solve for:

$$
\frac{\Gamma \vdash e_0 : \tau_0 \quad \Gamma \vdash e_1 : \tau_1 \quad \tau_0 = \tau_1 \rightarrow T}{\Gamma \vdash e_0 \cdot e_1 : T} \qquad \qquad \frac{\Gamma, x : T \vdash e : \tau'}{\Gamma \vdash \lambda x . e : T \rightarrow \tau'}
$$
\n
$$
\frac{\Gamma \vdash e_1 : \tau_1 \quad \Gamma, x : \tau_1 \vdash e_2 : \tau_2}{\Gamma \vdash \text{let } x = e_1 \text{ in } e_2} \qquad \qquad \frac{\Gamma, x : T_1, y : T_1 \rightarrow T_2 \vdash e : \tau' \quad \tau' = T_2}{\Gamma \vdash \text{rec } y. \lambda x . e : T_1 \rightarrow T_2}
$$

This simple type inference mechanism does not result in as much *polymorphism*¹ as we would like. For example, consider a program that binds a variable f to the identity function, then applies it to both an int and a bool:

let
$$
f = \lambda x \cdot x
$$
 in
if $(f \text{ true})$ then $(f \text{ 3})$ else $(f \text{ 4})$ (1)

The type system above will find that the function f has some type $T \to T$, which means that it can act as if it had this type for any T . However, when the type checker encounters the application to true, it decides $T =$ **bool** first and says that the function is of type **bool** \rightarrow **bool**. It then gives a unification error when it sees the **int** parameters 3 and 4. We would like f to be polymorphic, having type **bool** \rightarrow **bool** when applied to a **bool** parameter and type $int \rightarrow int$ when applied to an int parameter.

The various versions of ML can do this. The trick is to bind variables like f not to types, but rather to type schemas. A type schema σ is a pattern for a type, which can mention type parameters α :

$$
\sigma \quad ::= \quad \forall \alpha_1, \ldots, \alpha_n \, . \, \tau \quad (n \geq 0)
$$

The idea is that if a variable has a type schema mentioning type parameters $\alpha_1, \ldots, \alpha_n$, it is bound to a term that can act as though it has any type that looks like τ with the parameters α_i replaced by arbitrary types τ_1, \ldots, τ_n . For example, we give the variable f the type schema $\forall \alpha \ldots \alpha \rightarrow \alpha$, and the type of the K combinator $\lambda xy. x$ (a.k.a. FALSE) is

$$
\forall \alpha. \forall \beta. \alpha \rightarrow \beta \rightarrow \alpha.
$$

1.1 Inferring type schemas

To incorporate type schemas into the type system, we extend Γ to bind variables to type schemas:

$$
\Gamma = x_1 \colon \sigma_1, \dots, x_n \colon \sigma_n
$$

Then the typing rule for variables *instantiates* the variable's type by replacing type parameters α with types. To make this work with type inference, these types are fresh type variables to be solved for:

$$
\overline{\Gamma, x: \forall \alpha_1, \ldots, \alpha_n.\tau \vdash x: \tau\{T_1/\alpha_1, \ldots, T_n/\alpha_n\}} \ \ (instantiation)
$$

We extend the typing rule for let to correspondingly generate type schemas by generalizing over type parameters that appear only in the type of e_1 (that is, do not appear in Γ):

¹Greek for "many shapes"

$$
\frac{\Gamma \vdash e_1 : \tau_1 \quad \Gamma, x : \forall \alpha_1, \dots, \alpha_n . \tau_1 \vdash e_2 : \tau_2 \quad \alpha_i \notin FTV(\Gamma) \quad i \in 1..n}{\Gamma \vdash \textbf{let } x = e_1 \textbf{ in } e_2 : \tau_2} \quad (generalization)
$$

How are the parameters α_i chosen? The algorithm is to type-check e_1 using type variables as above. However, once the type τ_1 is found, and unification is used to solve all equations in the derivation of $\Gamma \vdash e_1 : \tau_1$, any unsolved type variables T that are not constrained by appearing elsewhere in the program could be replaced by any type. Therefore, we replace each such type variable in τ_1 with a corresponding type parameter α . While it doesn't in principle hurt to have extra type parameters, the usual approach is to generate a type parameter for each unsolved T that appears in τ_1 but not in Γ .

1.2 Example

Here is a derivation exposing the polymorphic type of K in this system:

$$
\frac{x:\alpha, y:\beta \vdash x:\alpha}{x:\alpha \vdash \lambda y. x:\beta \to \alpha} \dots
$$
\n
$$
\frac{\vdash \lambda x. \lambda y. x:\alpha \to \beta \to \alpha}{\vdash \text{let } k = \lambda x. \lambda y. x \text{ in } e_2 : \tau_2}
$$
\n
$$
\frac{\vdash x. \lambda y. x:\alpha \to \beta \to \alpha}{\vdash \text{let } k = \lambda x. \lambda y. x \text{ in } e_2 : \tau_2}
$$

The type inference algorithm would proceed by computing a type $T_1 \rightarrow T_2 \rightarrow T_1$ for the variable k. Because neither T_1 nor T_2 would be mentioned in the typing context, it would replace them with the type variables α and β and give k the type schema $\forall \alpha \cdot \forall \beta \cdot \alpha \rightarrow \beta \rightarrow \alpha$ when type-checking e_2 .

1.3 Limitations of let-polymorphism

The type systems of ML and Haskell are based on let-polymorphism. We previously considered let $x =$ e_1 in e_2 to be equivalent to $(\lambda x. e_2)$ e_1 , but in SML, the former may be typable in some cases when the latter is not, e.g.:

```
- let val f = fn \times \Rightarrow x \text{ in if } (f \text{ true}) \text{ then } (f \text{ 3}) \text{ else } (f \text{ 4}) \text{ end};val it = 3: int
- (fn f \Rightarrow if (f true) then (f 3) else (f 4)) (fn x \Rightarrow x);
stdIn:17.27-17.32 Error: operator and operand don't agree [literal]
 operator domain: bool
 operand: int
 in expression:
   f 3
stdIn:17.38-17.43 Error: operator and operand don't agree [literal]
 operator domain: bool
  operand: int
 in expression:
   f 4
```
2 System F

If we consider type schemas to be regular types, we get the language System F, introduced by Girard in 1971. This lets us pass polymorphic terms uninstantiated to functions.

In the Church-style simply-typed λ -calculus, we annotated binding occurrences of variables with their types. The corresponding version of the polymorphic λ -calculus is called System F. Here we explicitly abstract terms with respect to types and explicitly instantiate by applying an abstracted term to a type. We augment the syntax with new terms and types:

e ::= \cdots | $\Lambda \alpha \cdot e$ | $e[\tau]$ τ ::= b | $\tau_1 \rightarrow \tau_2$ | α | $\forall \alpha \cdot \tau$

where b are the base types (e.g., int and $bool$). The new terms are type abstraction and type application, respectively. Operationally, we have

$$
(\Lambda \alpha. e)[\tau] \longrightarrow e{\tau/\alpha}.
$$

This just gives the rule for instantiating a type schema. Since these reductions only affects the types, they can be performed at compile time.

The typing rules for these constructs need a notion of well-formed type. We introduce a new environment Δ that maps type variables to their kinds (for now, there is only one kind: type). So Δ is a partial function with finite domain mapping types to $\{type\}$. Since the range is only a singleton, all Δ does for right now is to specify a set of types, namely dom(Δ) (it will get more complicated later). As before, we use the notation Δ , α : type for the partial function Δ [type/ α]. For now, we just abbreviate this by Δ , α .

We have two classes of type judgments:

$$
\Delta \vdash \tau : \textbf{type} \qquad \Delta; \Gamma \vdash e : \tau
$$

For now, we just abbreviate the former by $\Delta \vdash \tau$. These judgments just determine when τ is well-formed under the assumptions Δ . The typing rules for this class of judgments are:

$$
\Delta, \alpha \vdash \alpha \qquad \Delta \vdash b \qquad \frac{\Delta \vdash \sigma \ \Delta \vdash \tau}{\Delta \vdash \sigma \rightarrow \tau} \qquad \frac{\Delta, \alpha \vdash \tau}{\Delta \vdash \forall \alpha. \tau}
$$

Right now, all these rules do is use Δ to keep track of free type variables. One can show that $\Delta \vdash \tau$ iff $FV(\tau) \subseteq \text{dom}(\Delta).$

The typing rules for the second class of judgments are:

$$
\frac{\Delta \vdash \tau}{\Delta; \Gamma, x : \tau \vdash x : \tau} \qquad \frac{\Delta; \Gamma \vdash e_0 : \sigma \to \tau \quad \Delta; \Gamma \vdash e_1 : \sigma}{\Delta; \Gamma \vdash (e_0 e_1) : \tau} \qquad \frac{\Delta; \Gamma, x : \sigma \vdash e : \tau \quad \Delta \vdash \sigma}{\Delta; \Gamma \vdash (\lambda x : \sigma. e) : \sigma \to \tau}
$$
\n
$$
\frac{\Delta; \Gamma \vdash e : \forall \alpha. \tau \quad \Delta \vdash \sigma}{\Delta; \Gamma \vdash (e \sigma) : \tau \{\sigma/\alpha\}} \qquad \frac{\Delta, \alpha; \Gamma \vdash e : \tau \quad \alpha \notin FV(\Gamma)}{\Delta; \Gamma \vdash (\Lambda \alpha. e) : \forall \alpha. \tau}
$$

One can show that if $\Delta; \Gamma \vdash e : \tau$ is derivable, then τ and all types occurring in annotations in e are well-formed. In particular, $\vdash e : \tau$ only if e is a closed term and τ is a closed type, and all type annotations in e are closed types.