
CS611 Lecture 31 Subtype Polymorphism 7 November 2007
Lecturer: Radu Rugina

1 Introduction

In this lecture, we make an attempt to extend the typed λ-calculus for it to support more advanced data
structures such as records and references. In particular, we explore the concept of subtyping in detail, which
is one of the key features of object-oriented languages.

Subtyping was first introduced in SIMULA, considered the first object-oriented programming language.
Its inventors Ole-Johan Dahl and Kristen Nygaard later went on to win the Turing Award for their contri-
bution to the field of object-oriented programming. SIMULA introduced a number of innovative features
that have become the mainstay of modern OO languages including objects, subtyping and inheritance.

The concept of subtyping is closely tied to those of inheritance and polymorphism and offers a formal
way of studying them. It is best illustrated by means of an example:

Student Staff

Graduate Undergrad

TA RA

Person

Figure 1 - A Subtype Hierarchy

This is an example of a subtype hierarchy, which describes the relationship between different entities.
In this case, the Student and Staff types are both subtypes of the Person type (alternately, Person is the
supertype of Student and Staff). Similarly, TA is a subtype of the Student and Person types and so on. A
subtype relationship can also be thought of in terms of subsets. For example, this example can be visualized
with the help of the following Venn diagram:

Person

Staff

Student

Undergrad
Graduate

RATA ��
��

Figure 2 - Subtypes as Subsets

The ≤ symbol is typically used to denote the subtype relationship. Thus, Staff ≤ Person, RA ≤ Student
and so on. Sometimes, the symbol <: is also used; in this class, we will stick to the former. We will now
study some properties of the subtyping relationship and describe it more formally.

1

2 Basic Subtyping Rules

Formally we notate the subtype relationship as: τ1 ≤ τ2. In set notation, this is equivalent to [[τ1]] ⊆ [[τ2]].
The informal interpretation of this subtype relation is that anything of type τ1 can be used in a context that
expects something of type τ2. This is known as the subsumption rule:

Γ ` e : τ τ ≤ τ ′

Γ ` e : τ ′

There are two further general rules covering the subtyping relationship:

τ ≤ τ
(Reflexivity)

τ1 ≤ τ2 τ2 ≤ τ3

τ1 ≤ τ3
(Transitivity)

Since the ≤ relation is both reflexive and transitive, it is a pre-order. In most cases, anti-symmetry holds
as well, making the subtyping relation a partial order, but this is not always true. The subtype relationships
governing the 1 and 0 types are interesting:

• unit type: Being the top type, any type is a subtype of unit. If a context expects something of type
unit, then it can accept any type i.e., ∀τ. τ ≤ unit. In Java, this is much like the Object type.

• We can also introduce a bottom type void that is a universal subtype. This type can be accepted by
any context in lieu of any other type: i.e., ∀τ. void ≤ τ . This type is useful for describing the result of
a computation that never terminates, or that transfers control somewhere else rather than producing
a value.

The type hierarchy thus looks like the following:
1

0

...

Figure 3 - Type Hierarchy for Typed Lambda Calculus

3 Subtyping Rules for Product and Sum Types

The subtyping rules for product and sum types are quite intuitive:

τ1 ≤ τ ′
1 τ2 ≤ τ ′

2

τ1 ∗ τ2 ≤ τ ′
1 ∗ τ ′

2

τ1 ≤ τ ′
1 τ2 ≤ τ ′

2

τ1 + τ2 ≤ τ ′
1 + τ ′

2

4 Subtyping Rules for Records

Recall our extensions to the grammar of e and τ for adding support for records types:

e ::= . . . | {x1 = e1, . . . , xn = en} | e.x

τ ::= . . . | {x1 : τ1, . . . , xn : τn}

2

We also had the following rule added to the small-step semantics:

{x1 = v1, . . . , xn = vn}.xi −→ vi

and the following typing rules:

Γ ` ei : τi (∀i : 1 . . . n)
Γ ` {x1 = e1, . . . , xn = en} : {x1 : τ1, . . . , xn : τn}

Γ ` e : {x1 : τ1, . . . , xi : τi, . . . , xn : τn}
Γ ` e.xi : τi

There are two types of subtyping rules for records:

• Depth subtyping: a subtyping relation between two records that have the same number of fields.

τ1 ≤ τ ′
1 τ2 ≤ τ ′

2 . . . τn ≤ τ ′
n

{x1 : τ1, . . . , xn : τn} ≤ {x1 : τ ′
1, . . . , xn : τ ′

n}

• Width subtyping: a subtyping relation between two records that have different number of fields.

m ≤ n

{x1 : τ1, . . . , xn : τn} ≤ {x1 : τ1, . . . , xm : τm}
(the ≤ in the premise is an integer comparison)

Observe that in this case, the subtype has more components than the supertype. This is analogous to
the relationship between a subclass and a superclass, where the former has more components than the
latter.

The depth and width subtyping rules for records can in fact be combined to yield a single equivalent rule:

m ≤ n τi ≤ τ ′
i (∀i : 1 . . . n)

{x1 : τ1, . . . , xn : τn} ≤ {x1 : τ ′
1, . . . , xm : τ ′

m}

Records can be viewed as tagged product types of arbitrary length; the analogous extension for sum types
are variants. The depth subtyping rule for variants is the same as that given above for records (replacing
the records with variants). The width subtyping rule is however different and we will see why this is so.
Suppose we used a width subtyping rule of the same form as given above. Recall that if τ1 ≤ τ2, then this
implies that anything of type τ1 can be used in a context expecting something of type τ2. Suppose we now
had a case statement that did pattern matching on something of type τ2; our subtyping relation says that
we can pass in something of type τ1 to this case statement and still have it work. However, since τ2 has
fewer components than τ1 and the case statement was originally written for an object of type τ2, there will
be values of τ1 for which no corresponding pattern match exists. Thus, for variants, the direction of the ≤
symbol in the premise of the width subtyping rule given above needs to be reversed i.e., for variants, the
subtype will have fewer components than the supertype.

5 Function Subtyping

Based on the subtyping rules we have encountered up to this point, our first impulse is perhaps to write
down something like the following to describe the subtyping relation for functions:

τ1 ≤ τ ′
1 τ2 ≤ τ ′

2

τ1 → τ2 ≤ τ ′
1 → τ ′

2

However, this is incorrect. To see why, consider the following code snippet:

3

let f : τ1 → τ2 = f1 in
let f ′ : τ ′

1 → τ ′
2 = f2 in

let t : τ ′
1 = v1 in

f ′(t′)

In the example above, since f ≤ f ′, we should be able to use f where f ′ was expected. Therefore we
should be able to call f(t′). But f expects an input of type τ1 and gets instead an input of type τ ′

1, so we
should be able to use τ ′

1 where τ1 is expected, which in fact implies that we should have τ ′
1 ≤ τ1 instead of

τ1 ≤ τ ′
1 as given.

Actually, the incorrect typing rule given above was implemented in the language Eiffel and runtime
type-checking had to be added later to make the language type safe. Thus, the correct subtyping rule for
functions is:

τ ′
1 ≤ τ1 τ2 ≤ τ ′

2

τ1 → τ2 ≤ τ ′
1 → τ ′

2

All the subtyping rules we had seen thus far were covariant i.e., the subtyping relation related subexpres-
sions in the premise in the same direction as in the conclusion. In general, we say that a type constructor
F is covariant in one of its arguments τ if whenever τ ≤ τ ′, it is the case that F (τ) ≤ F (τ ′). The func-
tion subtyping rule is our first contravariant rule—the direction of the subtyping relation is reversed in the
premise.

6 Subtyping Rules for References

Here are the extensions to the grammar of e and τ for adding support for references:

e ::= . . . | ref e | !e | e1 := e2

τ ::= . . . | τ ref

where we add the following typing rules:

Γ ` e : τ
Γ ` ref e : τ ref

Γ ` e : τ ref
Γ ` !e : τ

Γ ` e1 : τ ref Γ ` e2 : τ

Γ ` e1 := e2 : 1

As for the subtyping rule, once again, our first impulse would be to write down something of the following
form:

τ1 ≤ τ2

τ1 ref ≤ τ2 ref

However, this is incorrect. To see why, consider the following example:

let x : Square ref = ref square in
let y : Shape ref = x in

(y := circle; (!x).side)

Even though this code type-checks with the given subtyping rule for reference types, it will cause a run-
time error, because in the last line x does not refer to a square anymore. This problem actually exists in Java
when using arrays. Apparently guided by a desire for simplicity, the designers used the rule given above,
with the result that soundness is achieved in the Java type system only by run-time type checks whenever
a value is assigned into a array of objects. To avoid this problem, we use the rule below:

τ1 ≤ τ2 τ2 ≤ τ1

τ1 ref ≤ τ2 ref

4

which equivalently can be written as:

τ ref ≤ τ ref

The correct subtyping rule for references is thus neither covariant nor contravariant in τ , but rather invariant
in τ .

5

