
CS611 Lecture 30 Recursive Types 5 November 2007
Lecturer: Andrew Myers

1 Introduction

In the programming languages we use, we can define recursive types. For example in Java we can define a
binary tree like this:

class Tree {
Tree left, right;
int value;

}

Similarly, in ML we can define recursive datatypes, with declarations like:

datatype tree = Leaf | Node of tree * tree * int

In the simply typed-lambda calculus, we have no corresponding mechanism.
Intuitively, we would like a tree type that satisfies the following equation:

tree = unit + tree * tree * int

The tree on the right-hand side can be replaced by the definition itself and in this way we can get a
binary tree of any size. The unit signifies an empty tree, analogous to the null value in Java.

2 Recursive Types as Regular Labeled Trees

By expanding the equation for tree, we can see that

α = unit + α ∗ α ∗ int

= unit + (unit + α ∗ α ∗ int) ∗ (unit + α ∗ α ∗ int) ∗ int

= unit + (unit + (unit + α ∗ α ∗ int) ∗ (unit + α ∗ α ∗ int) ∗ int) ∗ (unit + (unit + α ∗ α ∗ int) ∗ (unit + α ∗ α ∗ int) ∗ int) ∗ int

= · · ·

At each level, we have a finite type with the type variable α appearing at some of the leaves, and we obtain
the next level by substituting the right-hand side of the equation for α. This gives a sequence of deeper and
deeper finite trees, where each successive tree is a substitution instance of the previous tree.

If we take the limit of this process, we have an infinite tree. We can think of this as an infinite labeled
graph whose nodes are labeled with the type constructors *, +, int, and unit. This is very much like an
ordinary type expression, except that it is infinite. There are no more α’s, because we have substituted for
all of them all the way down. This infinite tree is a solution of the tree equation, and this is what we take
as the type tree.

In general, let Σ be a signature consisting of several type constructors of various arities. For example, Σ
might consist of the type constructors →, *, +, unit, and int. We can form the set of (finite) types over Σ
inductively in the usual way. Each such type can be regarded as a finite labeled tree. For example, the type
int→ int→ int can be viewed as the labeled tree

int

int

int

→

→

@@

@@

��

��

1

Now let us add some infinite types. These are infinite labeled trees that respect the arities of the
constructors in Σ; that is, if the constructor is binary (such as * or→), any node labeled with that constructor
must have exactly two children; and if the constructor is nullary, such at unit, then any node labeled with
that symbol must be a leaf. Within these constraints, the tree may be infinite.

A (finite or infinite) expression with only finitely many subexpressions up to isomorphism is called regular.
For example, the infinite type

int

int

int

. . .

→

→

→

@@

@@

@@

��

��

��

is regular, since it has only two subexpressions up to isomorphism, namely itself and int. The limit of
the unrolling of the equation above, which we took to be the type tree, is also regular; it has exactly five
subexpressions up to isomorphism, namely tree, unit, tree * tree * int, tree * tree, and int.

Regular trees are all we need to provide solutions to finite systems of type equations. Suppose we have
n type equations in n variables:

α1 = τ1

... (1)
αn = τn,

where each τi is a finite type over the type constructors Σ and type variables α1, . . . , αn. This system has a
solution σ1, . . . , σn in which each σi is a regular tree. Moreover, if no right-hand side is a variable, then the
solution is unique.

3 The µ Constructor

The definition of tree is recursive and not surprisingly we need to take some sort of fixed point – fixed point
on types. So we define a function F whose fixed point we need to find (we use a double colon to show that
it’s a function operating on types.

F (X) = λα :: type. 1 + α ∗ α ∗ int

tree = F (tree)

Suppose we have a fixed-point type constructor that solves these equations. If F (α) is the function
whose fixed-point we are trying to find, we denote the fixed-point as µα. F (α). By definition, F (µα. F (α)) =
µα. F (α). So we can use this construct to define tree = µα. unit + α ∗α ∗ int. If we write τ for F (α), then
fixed point would be µα. τ . Thus,

F (µα. τ) = τ{µα. τ/α} = µα. τ

This step of substituting the fixed-point for α inside τ “unfolds” τ . Going from one side to another of
the following equality we get the fold and unfold operations.

µα. τ = τ{µα. τ/α}

unfold : µα. τ −→ τ{µα. τ/α}

fold : µα. τ ←− τ{µα. τ/α}

2

The solutions σ1, . . . , σn to any finite system of the form (1) can be expressed in terms of µ. For example,
suppose τ1 and τ2 are finite type expressions over the type variables α1, α2 such that neither τ1 nor τ2 is a
variable. The system

α1 = τ1 α2 = τ2

has a unique solution σ1, σ2 specified by

σ1 = µα1. (τ1{µα2. τ2/α2}) σ2 = µα2. (τ2{µα1. τ1/α1}).

Mutually recursive type declarations arise quite often in practice. For example, consider the following
Java class definitions for Node and Edge:

class Node {
Edge[] inEdges, outEdges;

}

class Edge {
Node source, sink;

}

Note that Node refers to Edge and vice versa. So we must take a mutual fixed point when assigning a
meaning to such types.

When we write programs in Java or ML, we never write this µ construct. Instead the languages do this
for us. In most programming languages this equality is an isomorphism rather than an equality:

µα. τ ∼= τ{µα. τ/α}

Because of this isomorphism, we have to change the views through fold and unfold operations. Based on
how the conversion is handled by a programming language, we get two approaches to recursive types:

• Iso-recursive types where µα. τ and τ{µα. τ/α} are isomorphic and the fold and unfold operations
are explicit. Most programming languages handle it roughly in this way.

For example, ML has recursive datatypes, but a type is not equal to its unfolding. The case construct
signals to the compiler that a recursive datatype needs to be unfolded. The constructors for datatypes
are examples of operations that signal the need to fold.

• Equi-recursive types where either there are no operations indicating when to fold and unfold re-
cursive types. A few languages do support this, such as Modula-3. For example, in Modula-3, the
following two types are interchangeable in any context:

type foo = record x: integer, y: ref foo end
type bar = record x: integer,

y: ref record
x: integer integer
y: ref bar

end
end

4 Typing Rules

Let’s explore the isorecursive approach. We can write the typing rules for fold and unfold. Like many
of the rules we have seen so far, these will simply be a pair of “introduction” and “elimination” rules for
µ-types.

Γ ` e : τ{µα. τ/α}
Γ ` foldµα. τ e : µα. τ

(µ introduction)

3

Γ ` e : µατ

Γ ` unfold e : τ{µα. τ/α}
(µ elimination)

Suppose we want to type-check a fold expression (annotated so we know what the fold is meant to do).
We can think of it as function that gives you a µα. τ , given that its argument e has type τ{mutατ/�}, which
is really just the same type. This is what we have in the first rule.

The second rule simply says that unfold will do the opposite. If e has type µα. τ , then unfold e has
type τ{µα. τ/α}.

These two rules say that fold and unfold behave just like functions as we have described them.

5 An Example

Let’s now write code to demonstrate recursive types. Suppose we want to write a program to add up a list
of numbers. How would we define a recursive list type? It’s a recursive type, so there’ll be a µα. . We’ll
need a unit to represent the empty list, and the general case is that we have an int followed by the rest of
the list, i.e., int ∗ α. So we can define

intlist
4
= µα.unit + int ∗ α

Now we can write our function to add up an intlist, which we’ll call sum. This is going to be a recursive
function, so we’ll need to take a fix point and declare it as:

let sum = rec f : intlist→ int. λl : intlist.

And what do we do in the body of this function? We want to do a case on l, but we need a sum, and l
is a µ-type. So we need to first unfold l (and this is what ML will do for you automatically when it sees a
case). So we have

let l′ : unit + int ∗ intlist = unfold l in

And now we can do our typed case.

case l′ of

λu : unit. 0
| λp : int ∗ intlist. (#1 p) + f (#2 p)

This is just the same code that you would write in ML, except you can see explicitly some things that ML
hides from you. In particular, we’ve explicitly shown that there is recursion happening with our definition
of the intlist type, and the unfold that needs to happen to get the different views of our type.

6 Structural Operational Semantics

The operational semantics are straightforward. We have our introduction form (fold), and our elimination
form (unfold), and by now, you know that all structural operational semantics is just the elimination
form wrapped around the introduction form and some magic happens. So the left hand side would be
unfold (foldµα. τ e). And what does this step to? No surprises here: just e.

unfold (foldµα. τ e) −→ e

This is showing that there’s nothing really interesting happening here with these fold and unfold oper-
ations. They are just shifting views, and the fold and unfold mark which view we are looking at.

4

7 Self-Application and Ω

Recall the self-application and Ω terms that we saw in previous lectures.

SA
4
= λx. x x

Ω
4
= SA SA

We can now give these terms types, by adding some judicious folding. We know that x has to be some
kind of function type, where it can take itself as its argument. So x must have a type like:

x : µα. α→ τ

for some type τ .
So what will be the type of unfold x? We simply do one step of unfold for our µ-type.

unfold x : (µα. α→ τ)→ τ

Now unfold x looks like a function that takes in something of the type of x as an argument. So we can take
unfold x and apply it to x. And what’s the type of (unfold x) x?

(unfold x) x : τ

since unfold x gives us a τ , and we gave it an appropriate argument.
So now we can write the fully typed SA term.

SA
4
= λx : µα. α→ τ. (unfold x) x : (µα. α→ τ)→ τ

What if we folded the SA type? We unfolded x from µα. α→ τ to (µα. α→ τ)→ τ , so we can fold back
in the opposite direction:

foldµα. α→τ SA : µα. α→ τ

Therefore, we can take SA and apply it to fold SA, and get a τ .

SA (fold SA) : τ

And this, you’ll notice, is just the same as the Ω term. If we run our operational semantics, we’ll discover
that this expression goes into an infinite loop, just like before. And yet, it’s well-typed.

We never picked what τ was, and indeed, we can choose anything we want. This is a sure sign that the
term will never produce any result.

Ω : τ

8 Numbers as a Recursive Type

What else can we do with recursive types? Turns out we don’t need to have natural numbers anymore.
Recall that the typed λ-calculus started out with unit, boolean, and int. We already saw how to get rid
of boolean, by translating it to the sum unit + unit.

Using recursive types, we can encode numbers. A natural number is either 0, which we will represent as
null, or it’s the successor of a natural number. Thus, we can define a type for natural numbers:

nat
4
= µα.unit + α

5

Our representation of 0 is a folded null that has been injected into the sum. And unit would is folded 0,
and so on.

0
4
= foldnat inl(null)

1
4
= foldnat inr(0)

2
4
= foldnat inr(1)
. . .

We can use nat to code up all of the usual arithmetic that we want. For example, successor would be

SUCC
4
= λx : nat. foldnat inr(x) : nat

So all we really need is the unit type. If we have recursive types, products, and sums, we can build all
of the other types like natural numbers, integers, floating point numbers, and so on from the unit type.

9 Untyped to Typed λ-Calculus

Now that we have all the expressive power we want in types, we can encode the (untyped) λ-calculus with
types. Taking an arbitrary λ-calculus term that does not say what its type is, we can write down a type for
it. So what’s the type of a term in the λ-calculus?

Let’s call that type U. We know that terms in the λ-calculus are all functions that can take in other
terms of the λ-calculus and give you back another term in the λ-calculus as a result. So it must be the case
that U is isomorphic to U→ U. That means we can define it as:

U
4
= µα. α→ α

which will satisfy the isomorphism.
And we can in fact write a translation from the λ-calculus to the typed λ-calculus with recursive types.

[[x]] = x

[[e0 e1]] = (unfold e0) e1

[[λx. e]] = foldU λx : U. [[e]]

Note that every translation gives us something of type U.

10 Semantics of recursive types

One question we can ask is what fixed point we expect to get from the µ type constructor. One way to solve
these equations is to consider them as inductive definitions, in which the type corresponds to the union of
all sets generated by finite applications of F . This is an adequate interpretation for eager languages where
we do not expect to be able to construct infinite trees by taking fixed points. However, even in an eager
language, we expect to be able to take fixed points over functions. So for general F , we want the type to
denote CPOs that we can take fixed points over. The inductive construction will not do that.

Fortunately, we have all the necessary machinery. We understand the µ type constructor as finding the
fixed point to a domain equation that is solved according to Scott’s projective limit construction (seen in an
earlier lecture). This produces a CPO solution.

11 Closed vs Open Recursion

There is one thing that is limiting about our take on recursive types so far. A type like µα. α→ α is a closed
recursion mechanism, in which the scope of the recursion is very clearly defined. There is a µα. , and α can

6

only be mentioned in its body, and you therefore know exactly where you are taking a fixed point. That’s
nice, since the meaning of types is locally defined in some sense.

Many languages, such as Java, provide an open recursion mechanism. For example, in Java, a class can
refer to other classes, which can refer freely back to the original class. This is nice because you don’t have
to define an ordering on classes:

class A {
B x;
}

class B {
A x;
}

Notice that nowhere did we have to say that there’s a fixed point.
big fixed point over all of them. In general, if you want to understand the meaning of a bunch of types

in say a Java virtual machine, it’s really a big fixed point over all of the classes in the system, since they can
all refer to each other in arbitrarily complicated ways. With open recursion mechanisms, different names in
the program can implicitly correspond to fixed point constructions. The meaning of names is not defined in
a local way. In Java, we can create these names A and B, and they are referring to particular components
of a big fixed point that we took implicitly over the entire system.

The plus is that it supports extensibility and reuse. You can grab a bunch of classes that you have sitting
around, pull them into a system, and you don’t have to define where the fixed point is taken. In fact, the
classes that you are taking off the shelf can even refer to classes that are not yet defined, to be supplied by
you. The fixed point will then be automatically taken across the additional classes.

Open recursion gives you a lot of flexibility, but it does come with a price. There are some semantic
issues. Suppose we have the following.

class A {
static final int x = B.x + 1;
}

class B {
static final int x = A.x + 1;
}

What does this code mean? In Java lexicon, static final fields are supposed to look like compile-time
constants. But there is no actual fixed point solution to this code. There are no integers that we can assign
to A.x and B.x that can make both of the equations come out true. So open recursion mechanisms are a
bit problematic.

What do you get if you actually do this in Java? You’ll get a 1 and a 2, but which is which depends on
the order that these two classes are initialized.

7

