
CS611 Lecture 29 Strong Normalization and Logical Relations 2 November 2007
Lecturer: Andrew Myers

1 Strong normalization

The denotational semantics for λ→ claimed that no program had the meaning ⊥, which we interpreted as
a statement that all programs terminate. But do the operational semantics agree? And which operational
semantics, since we didn’t have to pick an evaluation strategy to write the denotational semantics? In fact,
it doesn’t matter: λ→ programs terminate in normal forms under any reasonable evaluation strategy.

Evaluation is weakly normalizing if all values (i.e., irreducible terms) reachable by evaluation are equiv-
alent, i.e., they are the same normal form. But it doesn’t guarantee that all (or any) evaluations reach a
value. Evaluation is strongly normalizing if all evaluations reach a normal form.

We’ll prove the property of strong normalization for CBV evaluation. Since CBV evaluation is deter-
ministic, we know that e converges iff e does not diverge: e ⇓ ⇐⇒ e 6⇑. If e both converged and diverged,
then the convergent evaluation of e could reach some value v. Determinism of evaluation implies that any
divergent evaluation from e would be alpha-equivalent at every step to the convergent evaluation. But any
term alpha-equivalent to v has to be a value itself, and could not take any additional step.

For our deterministic CBV calculus, we can express strong normalization as:

` e : τ =⇒ e ⇓

To prove this, we introduce a new proof technique, logical relations. In this technique, we define a relation
over terms, where the relation is indexed by a type and is defined by structural induction on that type. For
the purposes of of this proof, we define a unary logical relation SN τ . A unary relation is just a set, so we
write SN τ (e) to mean that e is a member of the set for the type τ .

The definition of SN τ has three kinds of clauses for each kind of τ :

1. The condition that e has type τ , that is, ` e : τ .

2. The condition we wish to prove, e ⇓.

3. A condition that ensures evaluation of elimination forms for type τ preserves the logical relation.

For the simple case of λ→, we can define SN τ as follows by structural induction on τ :

SN B(e) ⇐⇒ ` e : B ∧ e ⇓
SN τ1→τ2(e) ⇐⇒ ` e : τ1 → τ2 ∧ e ⇓

∧∀e′.SN τ1(e
′) =⇒ SN τ2(e e′)

The final clause of the definition of SN τ1→τ2 corresponds to (3) above. Note that although it is defined
in terms of a universal quantification over e′, the definition is well-founded because SN τ1→τ2 is defined in
terms of SN τ1 and SN τ2 , and τ1, τ2 ≺ τ1 → τ2.

2 Some properties of the logical relation

We can now state some important lemmas.

Lemma 1
SN τ (e) =⇒ e ⇓

This is obvious from the definition. In fact, while the name SN is suggestive of “strong normalization”, the
property is stronger, because of clause (3).

1



Lemma 2
` e : τ ∧ e −→ e′ ∧ SN τ (e′) =⇒ SN τ (e) (2a)

` e : τ ∧ e −→ e′ ∧ SN τ (e) =⇒ SN τ (e′) (2b)

This lemma says that the SN τ property is preserved when we walk either backward or forward in the
evaluation sequence. The proof of both parts is similar, so we show just the first part (2a).

Proof: by structural induction on τ . In each case we assume ` e : τ ∧ e −→ e′ ∧ SN τ (e′), and show
SN τ (e′).

Case τ = B: If we have SN B(e′), then e′ converges. But since e −→ e′, then e converges too. From
` e : B and e ⇓, we conclude SN B(e).

Case τ = τ1 → τ2: As in the previous case, we have e ⇓. We also need to show SN τ1(e
′′) =⇒ SN τ2(e e′′)

for an arbitrary e′′. Consider such e′′. We have SN τ1→τ2(e
′), so from its definition, we know SN τ2(e

′ e′′).
Since e −→ e′, we also know that e e′′ −→ e′ e′′ from the CBV evaluation rules. Since τ2 ≺ τ1 → τ2, we can
apply the induction hypothesis to e e′′, obtaining SN τ2(e e′′), as desired.

We need one more lemma that lets us do substitutions. The reason is that strong normalization is a
property of closed terms, but because we construct a proof by induction on typing derivations, we need
to consider open terms (the typing rule for lambda abstractions involves typing the function body, which
is open in general). However, we can close open terms by performing a substitution that replaces all free
variables with terms.

Let γ be a finite substitution, that maps from variables to values, e.g. γ = {x1 7→ v1 . . . xn 7→ vn}. We
say that γ satisfies a typing context Γ if they have the same domain and γ maps variables onto values that
are of the right type Γ(x) and further, that satisfy the SN property:

γ � Γ ⇐⇒ dom(γ) = dom(Γ) ∧ ∀x ∈ dom(γ). SN Γ(x)(γ(x))

We write γ(e) to mean the substitution in e of all variables in the domain of γ with the corresponding
values:

γ(e) = e{v1/x1} . . . {vn/xn}

We need a substitution lemma regarding finite substitutions:

Lemma 3
Γ ` x : τ ∧ γ � Γ =⇒ ` γ(x) : τ

Proof: This is proved by induction on the size of the domain of γ. The case n = 1 is the exactly substitution
lemma that we used to prove Preservation. And that same lemma can be used to prove the induction step.

With these definitions, we can now prove the main result:

Lemma 4
Γ ` e : τ ∧ γ � Γ =⇒ SN τ (γ(e))

Notice that if we instantiate this with γ = ∅, Γ = ∅, then we get ` e : τ =⇒ SN τ (e), which implies
strong normalization by Lemma 1.

We prove Lemma 4 by induction on the typing derivation Γ ` e : τ .

• Case Γ ` b : B. Clearly b ⇓ and ` γ(b) : B. Therefore, we know SN B(b).

• Case Γ ` x : τ . It must be the case that Γ(x) = τ , and because γ � Γ, therefore SN τ (γ(x)), as required.

2



• Case Γ ` e0 e1 : τ . We know from the typing derivation that the premises Γ ` e0 : τ1 → τ and
Γ ` e1 : τ1 hold for some type τ1. We apply the induction hypothesis to get SN τ1→τ (e0) and SN τ1(e1).
From the definition of SN τ1→τ (clause 3), this implies SN τ (γ(e0) γ(e1)). But by the definition of
substitution, this is the same as SN τ (γ(e0 e1)).

Notice that without that third clause (which we were able to introduce as part of the definition of
the logical relation), we would have been stuck at this point if we had just tried to prove the theorem
directly by induction on the typing derivation.

• Case Γ ` λx : τ1. e2. This is the only tricky case, because we need to prove the third clause that we
exploited in the application case. We need to show SN τ1→τ2(e). This requires proving three clauses.

The first clause requires that γ(e) has the right type. This comes trivially from the typing derivation
and Lemma 3.

The second clause requires that γ(e) converges. Since γ only maps variables to values, there is no
possibility of variable capture. So γ(e) = λx : τ1. (γ\x)(e2), where γ\x is the same as γ, without any
mapping for x. Since γ(e) is a value already, the second clause is also trivial.

The third clause requires that for an arbitrary e′ satisfying SN τ1(e
′), we have SN τ2(γ(e) e′). Consider

such an e′. How does the term γ(e) e′ evaluate? Since γ(e) is already a value, the right-hand side (e′)
evaluates until it reaches a value. Since we assumed SN τ1(e

′), its evaluation reaches some value v′. By
Lemma 2b, the value v′ satisfies SN τ1(v

′). The next step is to substitute v′ for x in the function body:
γ(e) v′ −→ (γ\x)(e2){v′/x}. But we can fold the substitution for x into γ, making this γ[x 7→ v′](e2).

From the typing derivation for e, we know Γ, x : τ1 ` e2 : τ2. If γ � Γ, then γ[x 7→ v′] � Γ, x : τ1. So we
can use the induction hypothesis to conclude SN τ2(γ[x 7→ v′](e2)). Since γ(e) e′ steps to this term in
a finite number of steps, we can conclude by induction on the number of steps (and Lemma 2a) that
SN τ2(e e′), as required.

3 Discussion

The technique of logical relations generalizes to more expressive languages. We’ll shortly see extensions of
the lambda calculus that can be used to write more interesting computations, yet can be proved strongly
normalizing with the same technique.

And there are situations in which it is useful to have a language in which all programs terminate. For
example, operating systems and web browsers are often extended with plug-in software that is not fully
trusted. Knowing that the plug-in code can’t create an infinite loop is useful (though we probably want an
even tighter bound on run time). Also, we’ll later see type systems with type expressions isomorphic to the
lambda calculus (parameterized types). Knowing that evaluation in the type language terminates means
that the type checker terminates, which is a useful property!

3


