To develop a denotational semantics for a language with recursive types, or to give a denotational semantics for the untyped lambda calculus, it is necessary to find domains that are solutions to domain equations. Given some domain constructor $\mathcal{F}(\mathcal{D})$, we need to be able to solve for the domain D satisfying the isomorphism:

$$
D \cong \mathcal{F}(D)
$$

We have seen some strategies for solving such equations earlier. In particular, inductively defined sets also satisfy a similar the equation, with the rule operator taking the role of \mathcal{F}. However, inductively defined sets do not generate complete partial orders; they only produce the elements that can be constructed by some finite number of applications of \mathcal{F}. This means that we cannot use them in any semantics where it is necessary to take a fixed point over D.

While it would be nice to be able to solve this equation as an equality, an isomorphism between the domains is sufficient.

We are looking for an isomorphism witnessed by a bijection $u p$ and $d o w n=u p^{-1}$:

$$
\begin{gathered}
\text { up }:[\mathcal{F}(D) \rightarrow D] \\
\text { down }:[D \rightarrow \mathcal{F}(D)]
\end{gathered}
$$

We want the isomorphism between the domains to preserve the ordering structure of the elements. That is, it should be homomorphic with respect to the ordering relation \sqsubseteq :

$$
\begin{gathered}
d \sqsubseteq d^{\prime} \Rightarrow u p(d) \sqsubseteq u p\left(d^{\prime}\right) \\
d \sqsubseteq d^{\prime} \Rightarrow \operatorname{down}(d) \sqsubseteq \operatorname{down}\left(d^{\prime}\right)
\end{gathered}
$$

1 Approximating the solution

We have already seen that for other recursive definitions $x=f(x)$, we can find a solution by taking the limit of the sequence $f^{n}(\perp)$, where \perp is some initial element. We can apply the same strategy to solving domain equations. We start from some initial domain D_{0}, and apply \mathcal{F} to obtain a sequence of domains $\mathcal{F}\left(D_{0}\right), \mathcal{F}\left(\mathcal{F}\left(D_{0}\right)\right), \mathcal{F}\left(\mathcal{F}\left(\mathcal{F}\left(D_{0}\right)\right)\right), \ldots$ where each domain in the sequence is a better approximation to the desired solution, yet preserves and extends the structure of the earlier approximations.

2 An ordering on domains

Therefore we need a way to relate two domains. We write $D \sqsubset E$ to indicate that D is a simplified version of E, to within some isomorphism. Our goal is to have

$$
\mathcal{F}\left(D_{0}\right) \sqsubseteq \mathcal{F}\left(\mathcal{F}\left(D_{0}\right)\right) \sqsubseteq \mathcal{F}\left(\mathcal{F}\left(\mathcal{F}\left(D_{0}\right)\right)\right) \sqsubset \ldots
$$

and then to use these approximations to take a limit of the sequence, much as we did in previous fixed-point constructions.

Two domains D and E are related if there exists a way of embedding D into E while preserving its structure. We can characterize this embedding in terms of a pair of functions: an embedding function $e:[D \rightarrow E]$ and a projection function $p:[E \rightarrow D]$. These functions must be continuous, and as depicted in Figure 1, they must also agree in the following sense: for all elements $d \in D$ and $d^{\prime} \in E, p(e(d))=d$ and $e\left(p\left(d^{\prime}\right)\right) \sqsubseteq d^{\prime}$. That is, on corresponding elements of D and E, the functions e and p act as inverses; on new elements in E, the projection function maps them to an element of D whose corresponding E element is related. Together, these functions are called an embedding-projection pair (ep-pair) (or just projection pair).

Figure 1: Embedding a domain D into a domain E

Figure 2: Successive approximations for $D=D_{\perp}$

3 A simple domain equation

For example, consider the domain equation $D=D_{\perp}$. The function $\mathcal{F}(D)$ maps each element $d \in D$ to $\lfloor d\rfloor$, and introduces a new element \perp. This is essentially the domain equation for a lazy infinite stream of unit values, because $D_{\perp} \cong(\mathbb{U} \times D)_{\perp}$. So assuming that the solution to the equation is a CPO (and it is), we can use the solution to give meaning to expressions like rec $x .($ null,$x)$, where we need to take a fixed point over D.

There are two obvious ways to define an embedding-projection pair relating the domains D and D_{\perp}, leading to two different solutions to the domain equation. The one we'll explore is shown in Figure 2. In the figure, leftward arrows represent p. Rightward arrows represent e, and implicitly, a p arrow in the opposite direction.

Given a sequence of domains $D_{0} \sqsubset D_{1} \sqsubset D_{2}, \ldots$, there is a corresponding sequence of embedding and projection functions $e_{n}: D_{n} \rightarrow D_{n+1}$ and $p_{n}: D_{n+1} \rightarrow D$. The diagram of Figure 2 corresponds to the following definition of these functions by induction on n :

$$
\begin{array}{rlr}
e_{n}(\perp) & =\perp & \\
e_{n}\left(\left\lfloor d_{n-1}\right\rfloor\right) & =\left\lfloor e_{n-1}\left(d_{n-1}\right)\right\rfloor & \\
p_{n}(\perp) & =\perp & \\
p_{0}(\lfloor\perp\rfloor) & =\perp & \\
p_{n}\left(\left\lfloor d_{n}\right\rfloor\right) & =\left\lfloor p_{n-1}\left(d_{n}\right)\right\rfloor & \\
(\text { where } n>0) \\
& n>0)
\end{array}
$$

This may seem like an needlessly complex way to define e_{n} and p_{n}, but it is done this way to show the approach that is used for more complex domain equations. Given these definitions, we easily show by induction that e_{n} and p_{n} form a valid ep-pair.

4 A solution to the domain equation

We are now ready to define the elements of the solution domain D. It is the projective limit (or inverse limit) of the domains D_{n} : the infinite commuting tuples $\left\langle d_{0}, d_{1}, d_{2}, \ldots\right\rangle$, where for all $n \geq 0, d_{n} \in D_{n}$, and further, $d_{n}=$ $p_{n}\left(d_{n+1}\right)$. Therefore, given an element d_{n}, it is possible to apply the projection functions $p_{n-1}, p_{n-2}, \ldots, p_{0}$ to obtain all the previous tuple elements. For brevity, we write these tuples in a comprehension form: $\left\langle d_{n}\right\rangle_{n \in \mathbb{N}}$ or even simply $\left\langle d_{n}\right\rangle$.

Since each of the D_{n} is a CPO, the the elements of D form a CPO when ordered pointwise: $\left\langle d_{n}\right\rangle \sqsubseteq\left\langle d_{n}^{\prime}\right\rangle$ iff $\forall n . d_{n} \sqsubseteq_{D_{n}} d_{n}^{\prime}$, and $\left\langle d_{n}\right\rangle \sqcup\left\langle d_{n}^{\prime}\right\rangle=\left\langle d_{n} \sqcup d_{n}^{\prime}\right\rangle$.

What are the elements of D ? There is a lowest element $\langle\perp, \perp, \perp, \ldots\rangle$ (call it x_{0}), and successive elements $x_{1}=\langle\perp,\lfloor\perp\rfloor,\lfloor\perp\rfloor, \ldots\rangle, x_{2}=\langle\perp,\lfloor\perp\rfloor,\lfloor\lfloor\perp\rfloor\rfloor,\lfloor\lfloor\perp\rfloor\rfloor, \ldots\rangle$, and so on. Finally, there is the supremum of all the other elements, $x_{\infty}=\langle\perp,\lfloor\perp\rfloor,\lfloor\lfloor\perp\rfloor\rfloor,\lfloor\lfloor\lfloor\perp\rfloor\rfloor\rfloor, \ldots\rangle$, corresponding to the diagonal in Figure 2. This last element makes the partial order complete.

It remains to show that there is an homomorphism between D and D_{\perp}. The isomorphism is as follows, clearly preserving the relationship among mapped elements:

$$
\begin{array}{rll}
x_{0} & \longleftrightarrow & \perp \\
x_{1} & \longleftrightarrow & \left\lfloor x_{0}\right\rfloor \\
x_{2} & \longleftrightarrow & \left\lfloor x_{1}\right\rfloor \\
& \cdots & \\
x_{\infty} & \longleftrightarrow & \left\lfloor x_{\infty}\right\rfloor
\end{array}
$$

We can define the isomorphism more formally in terms of the continuous function up: $D_{\perp} \rightarrow D$, which represents lifting of the entire tuple as lifting on each of its elements:

$$
\begin{aligned}
u p\left(\left\lfloor\left\langle d_{n}\right\rangle_{n \in \mathbb{N}}\right\rfloor\right) & =\left\langle p_{n}\left(\left\lfloor d_{n}\right\rfloor\right)\right\rangle_{n \in \mathbb{N}} \\
u p(\perp) & =x_{0}=\langle\perp, \perp, \perp, \ldots\rangle
\end{aligned}
$$

The inverse function is down : $D \rightarrow D_{\perp}$:

$$
\begin{aligned}
\operatorname{down}(\langle\perp, \perp, \perp, \ldots\rangle) & =\perp \\
\operatorname{down}\left(\left\langle\perp,\left\lfloor d_{0}\right\rfloor,\left\lfloor d_{1}\right\rfloor,\left\lfloor d_{2}\right\rfloor\right\rangle\right) & =\left\lfloor\left\langle d_{0}, d_{1}, d_{2}, \ldots\right\rangle\right\rfloor
\end{aligned}
$$

These functions are clearly inverses and homomorphisms.

5 A related example

Suppose we want to represent infinite lists of natural numbers. We might write the domain equation $D=$ $(\mathbb{N} \times D)_{\perp}$. This would allow us to give a semantics to the result of the following code, an infinite list of prime numbers, assuming that pairs in our language are lazy:

```
letrec primes_from = \lambdan:nat. if is_prime(n)
    then (n, primes_from(n+1))
    else primes_from(n+1)
```

in
primes_from(2)

Using the domain equation above, we'd expect this code to return the result $(\mathbf{2},(\mathbf{3}, \mathbf{(5 , \ldots)})$), with the denotation $\lfloor\langle 2,\lfloor\langle 3,\lfloor\langle 5, \ldots\rangle\rfloor\rangle\rfloor\rangle\rfloor$. To obtain this denotation, we define p_{n} and e_{n} as follows (note $m \in \mathbb{N}$):

$$
\begin{aligned}
e_{n}(\perp) & =\perp \\
e_{n}\left(\left\lfloor\left\langle m, d_{n-1}\right\rangle\right\rfloor\right) & =\left\lfloor\left\langle m, e_{n-1}\left(d_{n-1}\right)\right\rangle\right\rfloor \quad(\text { where } n>0) \\
p_{n}(\perp) & =p_{0}(\lfloor m, \perp\rfloor)=\perp \\
p_{n}\left(\left\lfloor\left\langle m, d_{n}\right\rangle\right\rfloor\right) & =\left\lfloor\left\langle m, p_{n-1}\left(d_{n}\right)\right\rangle\right\rfloor
\end{aligned}
$$

Therefore, the representation of the list of primes as commuting tuples is:

$$
\langle\perp,\lfloor\langle 2, \perp\rangle\rfloor,\lfloor\langle 2,\lfloor\langle 3, \perp\rangle\rfloor\rfloor,\lfloor\langle 2,\lfloor\langle 3,\lfloor\langle 5, \perp\rfloor\rangle\rfloor\rfloor, \ldots\rangle
$$

The functions up and down are defined similarly to the previous example:

$$
\begin{aligned}
u p(\perp) & =\langle\perp\rangle_{n \in \mathbb{N}} \\
u p\left(\left\lfloor\left\langle m, d_{n}\right\rangle\right\rfloor\right) & =\left\langle p_{n}\left(\left\lfloor\left\langle m, d_{n}\right\rangle\right\rfloor\right)\right\rangle \\
\operatorname{down}\left(\langle\perp\rangle_{n \in \mathbb{N}}\right) & =\perp \\
\operatorname{down}\left(\left\langle\perp,\left\lfloor\left\langle m, d_{0}\right\rangle\right\rfloor,\left\lfloor\left\langle m, d_{1}\right\rangle\right\rfloor, \ldots\right\rangle\right) & =\left\lfloor\left\langle m,\left\langle d_{0}, d_{1}, \ldots\right\rangle\right\rangle\right\rfloor
\end{aligned}
$$

6 Scott's D_{∞} construction

Scott showed that this general approach could be followed to obtain the first nontrivial solution to the equation $D=[D \rightarrow D]$, where $[D \rightarrow D]$ represents the set of all continuous functions from D to D. We start from some pointed domain D_{0} containing at least two elements. For example, we could choose $D_{0}=\{\perp, *\}$, with $\perp \sqsubseteq *$. Then apply $\mathcal{F}(D)=[D \rightarrow D]$ to obtain domains $D_{1}=\left[D_{0} \rightarrow D_{0}\right], D_{2}=\left[D_{1} \rightarrow D_{1}\right]$, and so on. We define $e_{n}: D_{n} \rightarrow D_{n+1}$ and $p_{n}: D_{n+1} \rightarrow D_{n}$ inductively, as before:

$$
\begin{aligned}
e_{0}\left(d_{0}\right) & =\lambda y \in D_{0} \cdot d_{0} \quad\left(\text { where } d_{0} \in D_{0}\right) \\
p_{0}\left(d_{1}\right) & =d_{1}\left(\perp_{D_{0}}\right) \quad\left(\text { where } d_{1} \in D_{1}\right) \\
e_{n}\left(d_{n}\right) & =e_{n-1} \circ d_{n} \circ p_{n-1} \quad\left(\text { where } d_{n} \in D_{n}, n>0\right) \\
p_{n}\left(d_{n+1}\right) & =p_{n-1} \circ d_{n+1} \circ e_{n-1} \quad\left(\text { where } d_{n+1} \in D_{n+1}, n>0\right)
\end{aligned}
$$

To understand the definition of e_{n} and p_{n}, it helps to consider the following diagram:

We define D_{∞} as the projective limit of the D_{n}, as before.
We define down : $D_{\infty} \rightarrow\left[D_{\infty} \rightarrow D_{\infty}\right]$ by mapping an element of $d \in D_{\infty}$ to a function f that works on each element of D_{n}. Let $x=\left\langle x_{n}\right\rangle$ be an element of D_{∞}. We define $y=\left\langle y_{n}\right\rangle=f(x)$ as follows:

$$
\begin{aligned}
y_{0} & =d_{1}\left(x_{0}\right) \sqcup p_{0}\left(d_{2}\left(x_{1}\right)\right) \sqcup \cdots \sqcup\left(p_{0} \circ p_{1} \circ \cdots \circ p_{n}\right)\left(d_{n+2}\left(x_{n+1}\right)\right) \sqcup \ldots \\
y_{1} & =d_{2}\left(x_{1}\right) \sqcup p_{1}\left(d_{3}\left(x_{2}\right)\right) \sqcup \cdots \sqcup\left(p_{1} \circ p_{2} \circ \cdots \circ p_{n}\right)\left(d_{n+2}\left(x_{n+1}\right)\right) \sqcup \ldots \\
& \cdots \\
y_{n} & =d_{n+1}\left(x_{n}\right) \sqcup p_{n}\left(d_{n+2}\left(x_{n+1}\right)\right) \sqcup \cdots \sqcup\left(p_{n} \circ p_{n+1} \circ \cdots \circ p_{n+k}\right)\left(d_{n+k+2}\left(x_{n+k+1}\right)\right) \sqcup \ldots
\end{aligned}
$$

Using down, we can define up, which constructs the tuple of approximations of $f \in D_{\infty} \rightarrow D_{\infty}$ at every D_{n}.

$$
\begin{aligned}
u p(f) & =\left\langle d_{n}\right\rangle \\
d_{0} & =f\left(\perp_{D_{0}}\right) \\
d_{n+1} & =p_{\infty \rightarrow n} \circ f \circ e_{n \rightarrow \infty}
\end{aligned}
$$

where $p_{\infty \rightarrow n}$ is a projection from D_{∞} to D_{n}, and $e_{n \rightarrow \infty}$ is the inverse embedding, defined inductively on n as follows:

$$
\begin{aligned}
e_{0 \rightarrow \infty}\left(d_{0}\right) & =\left\langle d_{0}, e_{0}\left(d_{0}\right),\left(e_{1} \circ e_{0}\right)\left(d_{0}\right), \ldots\right\rangle \\
p_{\infty \rightarrow 0}\left(\left\langle d_{n}\right\rangle\right) & =d_{0} \\
e_{n+1 \rightarrow \infty}\left(d_{n+1}\right) & =e_{n \rightarrow \infty} \circ d_{n+1} \circ p_{\infty \rightarrow n} \\
p_{\infty \rightarrow n+1}(d) & =p_{\infty \rightarrow n} \circ \operatorname{down}(d) \circ e_{n \rightarrow \infty}
\end{aligned}
$$

7 Semantics of the untyped lambda calculus

With D_{∞}, we can give an extensional semantics for the untyped lambda calculus. It looks familiar except for the use of $u p$ and down. We have a naming environment $\rho \in \operatorname{Var} \rightarrow D_{\infty}$ and a semantic function such that $\llbracket e \rrbracket \rho \in D_{\infty}$:

$$
\begin{aligned}
\llbracket x \rrbracket \rho & =\rho(x) \\
\llbracket e_{0} e_{1} \rrbracket \rho & =\operatorname{down}\left(\llbracket e_{0} \rrbracket \rho\right) \llbracket e_{1} \rrbracket \rho \\
\llbracket \lambda x \cdot e \rrbracket \rho & =u p\left(\lambda y \in D_{\infty} \cdot \llbracket e \rrbracket \rho[x \mapsto y]\right)
\end{aligned}
$$

This semantics doesn't distinguish between nontermination and termination, which is a bit unsatisfactory. If we want to more faithfully model the CBV lambda calculus, we can use the domain equation $D \cong\left[D \rightarrow D_{\perp}\right]$

Figure 3: Approximations to the domain equation solution
instead (for CBN, we'd use $D \cong\left[D_{\perp} \rightarrow D_{\perp}\right]$). The equations are solved similarly to $D \cong[D \rightarrow D]$. In the CBV case, we can start with $D_{0}=\{*\}$ and modify the definitions for e_{n} and p_{n} as follows:

$$
\begin{aligned}
e_{0}(*) & =\lambda y \in D_{0} \cdot \perp \\
p_{0}\left(d_{1}\right) & =\{*\} \quad\left(\text { where } d_{1} \in D_{1}\right) \\
e_{n}\left(d_{n}\right) & =e_{n-1}^{*} \circ d_{n} \circ p_{n-1} \quad\left(\text { where } d_{n} \in D_{n}, n>0\right) \\
p_{n}\left(d_{n+1}\right) & =p_{n-1}^{*} \circ d_{n+1} \circ e_{n-1} \quad\left(\text { where } d_{n+1} \in D_{n+1}, n>0\right)
\end{aligned}
$$

The first three approximations to the solution are shown in Figure 3.
The rest follows directly. The CBV semantics then have $\llbracket e \rrbracket:(\operatorname{Var} \rightharpoonup D) \rightarrow D_{\perp}$:

$$
\begin{aligned}
\llbracket x \rrbracket \rho & =\lfloor\rho(x)\rfloor \\
\llbracket e_{0} e_{1} \rrbracket \rho & =\text { let } f \in D=\llbracket e_{0} \rrbracket \rho \text { in let } v \in D=\llbracket e_{1} \rrbracket \rho \text { in } \operatorname{down}(f)(v) \\
\llbracket \lambda x . e \rrbracket \rho & =\lfloor u p(\lambda y \in D . \llbracket e \rrbracket \rho[x \mapsto y \rrbracket)\rfloor
\end{aligned}
$$

