
CS611 Lecture 17 More ways to use continuations October 1, 2007
Lecturer: Andrew Myers

Continuations are great for talking about semantics, but they are also useful more concretely, for pro-
gramming and for compilation. We look at some of these uses here.

1 First-class continuations

Some languages expose continuations as first-class values. Examples of such languages include Scheme and
SML/NJ. In the latter, there is a module that a continuation type α cont, representing a continuation
expecting a value of type α. There are two functions for manipulating continuations:

callcc: (α cont→α)→α

(callcc f) passes the current continuation to the function f .

throw: α cont→α→β

(throw k v) sends the value v to the continuation k.

Because callcc passes the current continuation, corresponding to the evaluation context of the callcc itself,
invocation of the passed continuation makes the callcc expression itself seem to return again. It’s up to the
evaluation context of the callcc to decide whether it’s seeing the original return from f or a later invocation
of the passed continuation.

1.1 Semantics of first-class continuations

Using the translation approach we introduced earlier, we can easily describe these mechanisms. Suppose we
represent a continuation value for the continuation k by tagging it with the integer 7. Then we can translate
callcc and throw as follows:

[[callcc e]]ρk = [[e]]ρ(CHECK-FUN(λf. f (7, k) k))
[[throw e1 e2]]ρk = [[e1]]ρ(CHECK-CONT(λk′. [[e2]]ρk′))

The key to the added power is the non-linear use of k in the callcc rule. This allows k to be reused any
number of times.

1.2 Implementing threads with continuations

Once we have first-class continuations, we can use them to implement all the different control structures we
might want. We can even use them to implement (non-preemptive) threads, as in the following SML/NJ-like
code that explains how Concurrent ML (CML) is implemented:

type thread = unit cont
ready: thread queue = new_queue (* a mutable FIFO queue *)
enqueue(t) = insert ready t
dispatch() = throw (dequeue ready) ()
spawn(f: unit→unit): unit =
callcc(fn(k) ⇒ (enqueue k; f(); dispatch()))

yield(): unit = callcc (fn(k) ⇒ enqueue k; dispatch())

The interface to threads is the functions spawn and yield. The spawn function expects a function f
containing the work to be done in the newly spawned thread. The yield function causes the current thread
to relinquish control to the next thread on the ready queue. Control also transfers to a new thread when
one thread finishes evaluating. To complete the implementation of this thread package, we just need a queue
implementation. CML has preemptive threads, in which threads implicitly yield automatically after a certain
amount of time; this requires just a little help from the operating system.

1

2 Compiling with continuations

Because continuations expose control explicitly, they make a good intermediate language for compilation,
because control is exposed explicitly in machine language as well. We can show this by writing a translation
from a stripped-down version of uML to a language similar to assembly.

The result of doing such a translation is that we will have a fairly complete recipe for compiling any of
the languages we have talked about into the class down to the hardware.

3 Source language

Our source language looks like the lambda calculus with tuples and numbers, with the obvious (call-by-value)
semantics:

e ::= n | x | λx.e | e0 e1 | (e0, e1, . . . , en) | (#n e) | e0 + e1

The target language looks more like assembly language:

p ::= bb1; bb2; . . . ; bbn

bb ::= lb : c1; c2; . . . ; cn; jump x

c ::= mov x1, x2

| mov x, n

| mov x, lb

| add x1, x2, x3

| load x1, x2[n]
| cons x0, x1, . . . , xn

A program p consists of a series of basic blocks bb, each with a distinct label lb. Each basic block
contains a sequence of commands c, and ends with a jump instruction. Commands correspond to assembly
language instructions and are largely self-evident; the only one that is high-level is the cons instruction,
which allocates n words of space, places the address of the space into x0, and puts the contents of variables
(registers) x1 . . . xn into those words.

We don’t need a more general store instruction because the language is functional. And we aren’t
worrying about memory management. The jump instruction is an indirect jump. It makes the program
counter take the value of the argument register.

4 Intermediate language 1

The first intermediate language is in continuation-passing style:

v ::= n | x | λkx.c | halt

| λx.c

e ::= v | v0 + v1 | (v1, v2, . . . , vn) | (#n v)
c ::= let x = e in c

| v0 v1 v2

| v0 v1

Some things to note about the intermediate language:

• Lambda abstractions corresponding to continuations are marked with a overline. These are considered
administrative lambdas that we will eliminate at compile time, either by reducing them or by converting
them to real lambdas.

2

• There are no subexpressions in the language (e does not occur in its own definition).

• Commands c look a lot like basic blocks:

let x1 = e1 in
let x2 = e2 in

. . .
let xn = en in

v0 v1 v2

• Lambdas are not closed and can occur inside other lambdas.

The contract of the translation is that [[e]]k will evaluate e and pass its result to the continuation k. To
translate an entire program, we use k = halt, where halt is the continuation to send the result of the entire
program to. Here is the translation from the source to the first intermediate language:

[[x]]k = k x

[[n]]k = k n

[[λx. e]]k = k (λxk′.([[e]] k′))

[[e0 e1]]k = [[e0]]
(
λf.[[e1]]

(
λv.(f v k)

))
[[(e1, e2, . . . , en)]]k = [[e1]]

(
λx1. . . . [[en]]

(
λxn. let t = (x1, x2, . . . , xn) in (k t)

))
[[#n e]]k = [[e]](λt. let y = #n t in (k y))

[[(e1 + e2)]]k = [[e1]]
(
λx1.[[e2]](λx2. let z = x1 + x2 in (k z))

)
Let’s see an example. We translate the expression [[(λa.(#1 a)) (3, 4)]]k, using k = halt.

[[(λa.(#1 a)) (3, 4)]] k

= [[λa.(#1 a)]] (λf.[[(3, 4)]](λv.(f v k)))
= (λf.[[(3, 4)]](λv.(f v k))) (λak′.[[#1 a]] k′)

= (λf.[[3]]
(
λx1.[[4]](λx2. let b = (x1, x2) in (λv.(f v k)) b)

)
) (λak′.[[#1 a]] k′)

= (λf.
(
λx1.(λx2. let b = (x1, x2) in (λv.(f v k)) b) 4

)
3) (λak′.[[#1 a]] k′)

= (λf.
(
λx1.(λx2. let b = (x1, x2) in (λv.(f v k)) b) 4

)
3) (λak′.[[a]](λt. let y = #1 t in k′ t))

Clearly, the translation generates a lot of administrative lambdas, which will be quite expensive if they
are compiled into machine code. To make the code more efficient and compact, we will optimize it using
some simple rewriting rules to eliminate administrative lambdas.

β-Reduction

We can eliminate unnecessary application to a variable, by copy propagation:

(λx.e) y −→ e{y/x}
Other unnecessary administrative lambdas can be converted into lets:

(λx.c)v −→ let x = v in c

We can also perform administrative η-reductions:

λx.k x −→ k

If we apply these rules to the expression above, we get

3

let f = (λk′a. let y = #1 a in k′ y) in
let x1 = 3 in

let x2 = 4 in
let x3 = (x1, x2) in

f b k

This is starting to look a lot more like our target language.
The idea of separating administrative terms from real terms and performing a compile-time partial eval-

uation is powerful and can be used in many other contexts. Here, it allows us to write a very simple CPS
conversion that treats all continuations uniformly, and perform a number of control optimizations.

Note that we may not be able to remove all administrative lambdas. Any that cannot be reduced using
the rules above are converted into real lambdas.

4.1 Tail call optimization *

A tail call is a function call that determines the result of another function. A tail-recursive function is one
whose recursive calls are all tail calls. Continuations make tail calls easy to optimize. For example, the
following program has a tail call from f to g:

let g =λx.#1 x in
let g = λx. g x

in
f(2)

The translation of the body of f is (g (λy.k′ y) x), which permits optimization by η-reduction to (g k x).
In this optimized code, g does not bother to return to f , but rather jumps directly back to f ’s caller. This
is an important optimization for functional programming languages, where tail-recursive calls that take up
linear stack space are converted into loops that take up constant stack space.

5 Intermediate Language 1 → Intermediate Language 2

The next step is the translation from Intermediate language 1 to Intermediate Language 2. In this interme-
diate language, all lambdas are at the top level, with no nesting:

P ::= let xf = λkx1 . . . xn. c in P

| let xc = λx1 . . . xn. c in P

| c

c ::= let x = e in c | x0 x1 . . . xn

e ::= n | x | halt | x1 + x2 | (x1, x2, . . . , xn) | #n x

The translation requires the construction of closures that capture all the free variables of the lambda
abstractions in intermediate language 1. We have covered closure conversion earlier; it too can be phrased
as a translation that exploits compile-time partial evaluation.

4

6 Intermediate Language 2 → Assembly

The translation is given below. Note: ra is the name of the dedicated register that holds the return address.

P[[p]] = program for p

C[[c]] = sequence of commands c1; c2; . . . ; cn

P[[s]] = main : C[[c]];halt :
P[[let xf = λkx1 . . . xn. c in p]] = xf : mov k, ra;

mov x1, a1;
...
mov xn, an;
C[[c]];
P[[p]]

P[[let xc = λx1 . . . xn. c in p]] = xc : mov x1, a1;
...
mov xn, an;
C[[c]];
P[[p]]

C[[let x1 = x2 in c]] = mov x1, x2; C[[c]]
C[[let x1 = x2 + x3 in c]] = add x1, x2, x3; C[[c]]

C[[let x0 = (x1, x2, . . . , xn) in c]] = cons x0, x1, x2, . . . , xn; C[[c]]
C[[let x1 = #n x2 in c]] = load x1, x2[n]; C[[c]]

C[[x0 k x1 . . . xn]] = mov ra, k;
mov a1, x1;

...
mov an, xn;
jump x0

At this point, we are still assuming an infinite supply of registers. We need to do register allocation and
possibly spill registers to a stack to obtain working code.

While this translation is very simple, it is possible to do a better job of generating calling code. For
example, we are doing a lot of register moves when calling functions and when starting the function body.
These could be optimized.

5

