
CS611 Lecture 7 Inductive Definitions and Fixed Points 7 September 2007
Lecturer: Andrew Myers

1 Set operators

A set of inference rules generate rule instances of the form

X1 X2 . . . Xn

X
, (1)

where X and the Xi are members of some set S. The premises are X1, X2, . . . , Xn and the conclusion is X.
We use such rule instances to specify an inductively defined subset A ⊆ S; intuitively, the rule (1) says that
if you have X1, . . . , Xn ∈ A, then you must also take X ∈ A.

Note that since an inductively defined set is defined by the rule instances, we are free to introduce
metanotation in rules as long as it is clear what rule instances are generated.

Formally, given a set of rules and a subset B ⊆ S, define a rule operator R that captures the inferences
that can be made from the rule instances:

R(B)
4
= {X | {X1, X2, . . . , Xn} ⊆ B and

X1 X2 . . . Xn

X
is a rule instance}. (2)

Then R is a function mapping subsets of S to subsets of S; that is, R : 2S → 2S , where 2S denotes the
powerset (set of all subsets) of S. An important property of R is that it is clearly monotone: if B ⊆ C, then
R(B) ⊆ R(C).

What set A ⊆ S is defined by the rules? At the very least, we would like A to satisfy the following two
properties:

• A is R-consistent : A ⊆ R(A). We would like this to hold because we would like every element of A to
be included in A only as a result of applying a rule.

• A is R-closed : R(A) ⊆ A. We would like this to hold because we would like every element that the
rules say should be in A to actually be in A.

These two properties together say that A = R(A), or in other words, A should be a fixed point of R.
There are two natural questions to ask:

• Does R actually have a fixed point?

• Is the fixed point unique? If not, which one should we take?

2 Least fixed points

In fact, any monotone set operator R always has at least one fixed point. It may have many. But among all
its fixed points, it has a unique minimal one with respect to set inclusion ⊆; that is, a fixed point that is a
subset of all other fixed points of R. We call this the least fixed point of R, and we take A to be this set.

The least fixed point of R can be defined in two different ways, “from below” and “from above”:

A∗
4
=

⋃
{Rn(∅) | n ≥ 0} = R(∅) ∪R(R(∅)) ∪R(R(R(∅))) ∪ · · · (3)

A∗ 4
=

⋂
{B ⊆ S | R(B) ⊆ B}. (4)

The set A∗ is the union of all sets of the form Rn(∅), the sets obtained by applying R some finite number
of times to the empty set. It consists of all elements of S that are in Rn(∅) for some n ≥ 0.

The set A∗ is the intersection of all the R-closed subsets of S. It consists of all elements of S that are in
every R-closed set.

We will show that A∗ = A∗ and that this set is the least fixed point of R, so we will take A
4
= A∗ = A∗.

1



3 Proof

Obviously, ∅ ⊆ R(∅). Since R is monotone, we can apply it to both sides, obtaining R(∅) ⊆ R2(∅). Clearly
Rn(∅) ⊆ Rn+1(∅) for all n. So we can see that the successive sets Rn(∅) in the union defining A∗ are in a
chain with respect to ⊆:

∅ ⊆ R(∅) ⊆ R2(∅) ⊆ R3(∅) ⊆ R4(∅) ⊆ . . .

3.1 Closure

First, we show that A∗ is R-closed: i.e., R(A∗) ⊆ A∗. Consider an arbitrary x ∈ R(A∗). It must be there is
a rule x1,...xn

x where all of the xi are in A∗. Each of xi must be found first in one of the sets Rm(∅). Since
there are a finite number of premises (n), there must be a set Rm(∅) in the chain that includes all of the
xi. But then Rm+1(∅) must include x, so therefore so does A∗. Since this is true for arbitrary x ∈ R(A∗),
we have R(A∗) ⊆ A∗.

3.2 Consistency

We need to show that A∗ ⊆ R(A∗). Consider an arbitrary x ∈ A∗. We must have x ∈ Rm(∅) for some m.
In this case, we know that all its premises xi are found in Rm−1(∅). Since Rm−1(∅) ⊆ A∗, we can apply R
to both sides to obtain Rm(∅) ⊆ R(A∗). Therefore x must be in R(A∗), and so A∗ is R-consistent.

3.3 Least fixed point

Suppose we have another fixed point of R. Call it B. Given B = R(B), we want to show that A∗ ⊆ B.
Clearly we have ∅ ⊆ B. Applying R to both sides, we obtain R(∅) ⊆ R(B) = B We can repeat as necessary
to obtain Rn(∅) ⊆ B (that is, this holds by induction on n). Therefore the union of all Rn(∅) cannot
contain any elements not in B, so A∗ ⊆ B. In fact, by the same argument, not only is A∗ the least fixed
point, it is the least R-consistent set.

4 Other fixed points

In general the rule operator will have other fixed points. These correspond to allowing some proof trees with
infinite derivations. For example, consider these three rules over Z:

0
0

n + 1
n 1

The least fixed point will consist of {n | n ≥ 1}. The greatest fixed point will be N, including 0, because
{0, 1, . . .} is a fixed point of R, even though there is no finite proof tree deriving 0. The greatest fixed point
is the union of all R-consistent sets.

However, we use the least fixed point because it ensures that all the proof trees are finite. Hence, the
subderivation relation on proof trees is well-founded. This would not be the case with other fixed points.

5 Finiteness of premises

One importance feature of inference rules is that the number of premises is finite. We saw that was needed
in the argument that A∗ is R-closed. If inference rules have an infinite number of premises, A∗ need not be
closed! Consider these rules over Z:

1
n

n + 1
m (∀m>n)

n

In this case, the A∗ construction gives us the set {1, 2, . . .}, but 0 ∈ R(A∗).

2



6 Rule Induction

Let us use our newfound wisdom on well-founded induction and least fixed points of monotone maps to prove
some properties of the semantics we have seen so far.

6.1 Example 1: evaluation preserves closedness

Theorem If e → e′ under the CBV reduction rules, then FV(e′) ⊆ FV(e). In other words, CBV reductions
cannot introduce any new free variables.

Proof. By induction on the CBV derivation of e → e′. There is one case for each CBV rule, corresponding
to each way e → e′ could be derived.

Case 1 :
e1 → e′1

e1 e2 → e′1 e2
.

We assume that the desired property is true of the premise—this is the induction hypothesis—and we wish to
prove under this assumption that it is true for the conclusion. Thus we are assuming that FV(e′1) ⊆ FV(e1)
and wish to prove that FV(e′1 e2) ⊆ FV(e1 e2).

FV(e′1 e2) = FV(e′1) ∪ FV(e2) by the definition of FV

⊆ FV(e1) ∪ FV(e2) by the induction hypothesis
= FV(e1 e2) again by the definition of FV.

Case 2 :
e2 → e′2

v e2 → v e′2
.

This case is similar to Case 1, where now e2 → e′2 is used in the induction hypothesis.

Case 3 :
(λx. e)v → e{v/x}

.

There is no induction hypothesis for this case, since there is no premise in the rule; thus this case constitutes
the basis of our induction. We wish to show, independently of any inductive assumption, that FV(e{v/x}) ⊆
FV((λx. e)v).

This case requires a lemma, stated below, to show that FV(e{v/x}) ⊆ (FV(e)−{x})∪FV(v). Once that
is shown, we have

FV(e{v/x}) ⊆ (FV(e)− {x}) ∪ FV(v) by the lemma to be proved
= FV(λx. e) ∪ FV(v) by the definition of FV

= FV((λx. e)v) again by the definition of FV.

We have now considered all three rules of derivation for the CBV λ-calculus, so the theorem is proved.

Lemma FV(e{v/x}) ⊆ (FV(e)− {x}) ∪ FV(v) (this lemma is used by case 3 in the above theorem).

Proof. By structural induction on e. There is one case for each clause in the definition of the substitution
operator. We have assumed previously that values are closed terms, so FV(v) = ∅ for any value v; but
actually we do not need this for the proof, and we do not assume it.

3



Case 1 : e = x.

FV(e{v/x}) = FV(x{v/x})
= FV(v) by the definition of the substitution operator
= ({x} − {x}) ∪ FV(v)
= (FV(x)− {x}) ∪ FV(v) by the definition of FV

= (FV(e)− {x}) ∪ FV(v).

Case 2 : e = y, y 6= x.

FV(e{v/x}) = FV(y{v/x})
= FV(y) by the definition of the substitution operator
= {y} by the definition of FV

⊆ ({y} − {x}) ∪ FV(v)
= (FV(y)− {x}) ∪ FV(v) again by the definition of FV

= (FV(e)− {x}) ∪ FV(v).

Case 3 : e = e1 e2.

FV(e{v/x}) = FV((e1 e2){v/x})
= FV(e1{v/x} e2{v/x}) by the definition of the substitution operator
⊆ (FV(e1)− {x}) ∪ FV(v) ∪ (FV(e2)− {x}) ∪ FV(v) by the induction hypothesis
= ((FV(e1) ∪ FV(e2))− {x}) ∪ FV(v)
= (FV(e1 e2)− {x}) ∪ FV(v) again by the definition of FV

= (FV(e)− {x}) ∪ FV(v).

Case 4 : e = λx. e′.

FV(e{v/x}) = FV((λx. e′){v/x})
= FV(λx. e′) by the definition of the substitution operator
= FV(λx. e′)− {x} because x 6∈ FV(λx. e′)
⊆ (FV(e)− {x}) ∪ FV(v).

Case 5 : e = λy. e′, y 6= x. This is the most interesting case, because it involves a change of bound variable.
Using the fact FV(v) = ∅ for values v would give a slightly simpler proof. Let v be a value and z a variable
such that z 6= x, z 6∈ FV(e′), and z 6∈ FV(v).

FV(e{v/x}) = FV((λy. e′){v/x})
= FV(λz. e′{z/y}{v/x}) by the definition of the substitution operator
= FV(e′{z/y}{v/x})− {z} by the definition of FV

= ((((FV(e′)− {y}) ∪ FV(z))− {x}) ∪ FV(v))− {z} by the induction hypothesis twice
= (((FV(λy. e′) ∪ {z})− {x}) ∪ FV(v))− {z} by the definition of FV

= ((FV(λy. e′)− {x}) ∪ FV(v) ∪ {z})− {z}
= (FV(e)− {x}) ∪ FV(v).

4



There is a subtle point that arises in case 5. We said at the beginning of the proof that we would be
doing structural induction on e; that is, induction on the well-founded subterm relation <. This was a lie.
Because of the change of bound variable necessary in case 5, we are actually doing induction on the relation
of subterm modulo α-equivalence:

e <α e′
4
= ∃e′′ e′′ < e′ ∧ e =α e′′.

But a moment’s thought reveals that this relation is still well-founded, since α-reduction does not change
the size or shape of the term, so we are ok.

6.2 Example 2: agreement of big-step and small-step semantics

As we saw earlier, we can express the idea that the two semantics should agree on terminating executions
by connecting the −→∗ and ⇓ relations:

〈c, σ〉 −→∗ 〈skip, σ′〉 ⇐⇒ 〈c, σ〉 ⇓ σ′

This can be proved using induction. To prove the ⇒ direction, we can use structural induction on c. The
⇐ direction requires induction on the derivation of the big-step evaluation. We are given 〈c, σ〉 ⇓ σ′, so we
know that there is a derivation. The form of the derivation depends on the form of c. Here we show just a
few of the cases for c.

• Case skip. In this case we know σ = σ′, and trivially, 〈skip, σ〉 −→∗ 〈skip, σ〉.

• Case x := a. In this case we know from the premises that 〈a, σ〉 ⇓ n for some n, and that σ′ = σ[x 7→ n].

We will need a lemma that 〈a, σ〉 ⇓ n ⇒ 〈a, σ〉 −→∗ n. This can be proved using the same technique
being used on commands. We will also need a lemma showing that 〈a, σ〉 −→∗ n implies 〈x :=
a, σ〉 −→∗ 〈x := n, σ〉. This obvious result can be proved easily using an induction on the number of
steps taken.

Given these lemmas, we have 〈x := a, σ〉 −→∗ 〈x := n, σ〉 and 〈x := n, σ〉 −→ 〈skip, σ[x 7→ n]〉, so
〈x := a, σ〉 −→∗ 〈skip, σ[x 7→ n]〉.

• Case while b do c, where b evaluates to false. In this case we have 〈b, σ〉 ⇓ false and σ = σ′. Consider
what happens in the small-steps semantics. Given two more lemmas, that 〈b, σ〉 ⇓ t ⇒ 〈b, σ〉 −→∗ t, and
that 〈b, σ〉 −→∗ t ⇒ 〈while b do c, σ〉 −→∗ 〈while t do c, σ〉, we have 〈while b do c, σ〉 −→∗ 〈skip, σ〉,
as desired.

• Case while b do c, where b evaluates to true. This is the most interesting case in the whole proof. We
need one more obvious lemma for stitching together small-step executions:

(〈c1, σ〉 −→∗ 〈skip, σ′〉 ∧ 〈c2, σ
′〉 −→∗ 〈skip, σ′′〉) =⇒ 〈c1; c2, σ〉 −→∗ 〈skip, σ′′〉 (5)

This can be proved by induction on the number of steps.

Now, because 〈while b do c, σ〉 ⇓ 〈skip, σ′〉, we know that 〈c, σ〉 ⇓ σ′′ and 〈while b do c, σ′′〉 ⇓ σ′.
Further, because the derivations of these two assertions are subderivations of that for 〈while b do c, σ〉,
the induction hypothesis gives us that 〈c, σ〉 −→∗ 〈skip, σ′′〉 and that 〈while b do c, σ′′〉 −→∗ σ′. Using
Lemma 5, we have 〈c;while b do c, σ〉 −→∗ 〈skip, σ′〉.
Now consider the small-step side. We have an initial step

〈while b do c, σ〉 −→ 〈if b then (c;while b do c) else skip, σ〉

From prior lemmas, we know this will step to 〈c;while b do c, σ〉, which we just showed will step to
〈skip, σ′〉 as desired.

5



Notice that we could not have used structural induction for this proof, because the induction step
involved relating an evaluation of the command while b do c to a different evaluation of the same
command rather than to an evaluation of a subexpression.

7 Remark

The value of the reasoning framework we have set up is that formal reasoning about the semantics of
programming languages, including such seemingly complicated notions as reductions and substitutions, can
be reduced to the mindless application of a few simple rules. There is no hand-waving or magic involved.
There is nothing hidden, it is all right there in front of you. To the extent that we can do this for real
programming languages, we will be better able to understand what is going on.

8 The Knaster–Tarski Theorem

This material is optional.
The fact that A∗ = A∗ is a special case of a more general theorem called the Knaster–Tarski theorem.

It states that any monotone set operator R has a unique least fixed point, and that this fixed point can be
obtained either “from below” by iteratively applying R to the empty set, or “from above” by taking the
intersection of all R-closed sets.

For general monotone operators R, the “from below” construction may require iteration through transfi-
nite ordinals. However, the operators R defined from rule systems as described above are chain-continuous
(definition below). This is a stronger property than monotonicity. It guarantees that the “from below”
construction converges to a fixed point after only ω steps, where ω is the first transfinite ordinal.

8.1 Monotone, continuous, and finitary operators

A set operator R : 2S → 2S is said to be

• monotone if B ⊆ C implies R(B) ⊆ R(C);

• chain-continuous if for any chain of sets C,

R(
⋃

C) =
⋃

{R(B) | B ∈ C}

(a chain is a set C of subsets of S that is linearly ordered by the set inclusion relation ⊆; that is, for
all B,C ∈ C, either B ⊆ C or C ⊆ B);

• finitary if for any set C, the value of R(C) is determined by the values of R(B) for finite subsets B ⊆ C
in the following sense:

R(C) =
⋃

{R(B) | B ⊆ C, B finite}.

One can show

1. Every rule-based operator of the form (2) is finitary;

2. Every finitary operator is chain-continuous (in fact, the converse holds as well);

3. Every chain-continuous operator is monotone.

The proofs of 1, 2, and 3 are fairly straightforward and we will leave them as exercises. The converse of 2
requires transfinite induction and is more difficult.

6



8.2 Proof of the Knaster–Tarski Theorem for chain-continuous operators

Let us prove the Knaster–Tarski theorem in the special case of chain-continuous operators, which will allow
us to avoid introducing transfinite ordinals (not that they are not worth introducing!), and that is all we
need to handle rule-based inductive definitions.

Theorem (Knaster–Tarski)
Let R : 2S → 2S be a chain-continuous set operator, and let A∗ and A∗ be defined as in (3) and (4),

respectively. Then A∗ = A∗, and this set is the ⊆-least fixed point of R.

Proof. The theorem follows from two observations:

(i) For every n and every R-closed set B, Rn(∅) ⊆ B. This can be proved by induction on n. It follows
that A∗ ⊆ A∗.

(ii) A∗ is a fixed point of R, thus is R-closed. Since A∗ is contained in all R-closed sets, A∗ ⊆ A∗.

For (i), let B be an R-closed set. We proceed by induction on n. The basis for n = 0 is ∅ ⊆ B, which is
trivially true. Now suppose Rn(∅) ⊆ B. We have

Rn+1(∅) = R(Rn(∅))
⊆ R(B) by the induction hypothesis and monotonicity
⊆ B since B is R-closed.

We conclude that for all n and all R-closed sets B, Rn(∅) ⊆ B, therefore

A∗ =
⋃

{Rn(∅) | n ≥ 0} ⊆
⋂

{B ⊆ S | R(B) ⊆ B} = A∗.

For (ii), we want to show that R(A∗) = A∗. It can be proved by induction on n that the sets Rn(∅)
form a chain:

∅ ⊆ R(∅) ⊆ R2(∅) ⊆ R3(∅) ⊆ · · ·

We have ∅ ⊆ R(∅) trivially, and by monotonicity, if Rn(∅) ⊆ Rn+1(∅), then

Rn+1(∅) = R(Rn(∅)) ⊆ R(Rn+1(∅)) = Rn+2(∅).

Now by chain-continuity,

R(A∗) = R(
⋃
n≥0

Rn(∅)) =
⋃
n≥0

R(Rn(∅)) =
⋃
n≥0

Rn+1(∅) = A∗.

7


