
CS611 Lecture 3 λ-Calculus Encodings and Recursion 29 August 2007
Lecturer: Andrew Myers

We’ve seen the syntax and operational semantics for the lambda calculus (in fact, two different operational
semantics). However, it may not seem at this point like a language in which you could write interesting
programs. In this lecture, we’ll see that many features you would expect to find in a typical programming
language can be encoded into lambda calculus terms.

1 Local variables

One feature we seem to be missing is the ability to declare local variables. For example, in OCaml we
introduce a new local variable with the let expression:

let x = e1 in e2

Intuitively, we expect this expression to evaluate e1 to some value v1 and then to replace occurrences of
x inside e2 with v1. In other words, it should evaluate to e2{x/v1}. But we can construct another term that
evaluates in the same way:

(λx. e2) e1

−→∗ (λx. e2) v1

−→ e2{x/v1}

Therefore, we can view a let expression as simply syntactic sugar for an application of a lambda ab-
straction. Note that we use the notation −→∗ to represent the transition through zero or more steps of the
evaluation relation −→.

2 Booleans

Perhaps the simplest interesting kind of value is a Boolean. We would like to define the Boolean constants
TRUE and FALSE and the Boolean operators IF, AND, OR, NOT, etc. so that they behave in the expected
way. There are many reasonable encodings. One good one is to define TRUE and FALSE as functions that
return the first and second of their two arguments, respectively.

TRUE
4
= λxy. x

FALSE
4
= λxy. y.

Now we would like to define the conditional test IF. We would like IF to take three arguments b, t, f ,
where b is a Boolean value and t, f are arbitrary λ-terms. The function should return t if b = TRUE and f
if b = FALSE.

IF = λb tf.

{
t, if b = TRUE,
f, if b = FALSE.

Now the reason for defining TRUE and FALSE the way we did becomes clear. Since TRUE t f → t and
FALSE t f → f , all IF has to do is apply its Boolean argument to the other two arguments:

IF
4
= λb tf. b t f
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The other Boolean operators can be defined from IF:

AND
4
= λb1 b2. IF b1 b2 FALSE

OR
4
= λb1 b2. IF b1 TRUE b2

NOT
4
= λb1. IF b1 FALSE TRUE

Whereas these operators work correctly when given Boolean values as we have defined them, all bets
are off if they are applied to any other term. There is no guarantee of any kind of reasonable behavior.
Evaluation will proceed and reductions will be applied, but there is no way to usefully interpret the result.
With the untyped λ-calculus, it is garbage in, garbage out. Later on we’ll talk about how to model run-time
type checking that would catch erroneous uses.

3 Integers

We encode natural numbers N using Church numerals. This is the same encoding that Alonzo Church used,
although there are other reasonable encodings. The Church numeral for the number n ∈ N is denoted n. It
is the term λf. fn, where fn denotes the n-fold composition of f with itself:

0
4
= λf. λx. f0 x = λf. λx. x

1
4
= λf. λx. f1 x = λf. λx. f x

2
4
= λf. λx. f2 x = λf. λx. f(f x)

3
4
= λf. λx. f3 x = λf. λx. f(f(f x))
...

n
4
= λfx. fn x = λf. λx. f(f(. . . (f︸ ︷︷ ︸

n

x) . . .)

We can define the successor function s as

s
4
= λn. λfx. f(n f x).

That is, s on input n returns a function that takes a function f as input, applies n to it to get the n-fold
composition of f with itself, then composes that with one more f to get the (n + 1)-fold composition of f
with itself. Then,

s n = (λnfx. f(n f x)) n

→ λfx. f(n f x)
→ λfx. f(fn x)
= λfx. fn+1 x

= n + 1.

We can perform basic arithmetic with Church numerals. For addition, we might define addition as follows:

ADD
4
= λm n f x. m f (n f x).

On input m and n, this function returns

(λm n f x. m f (n f x)) m n → λf x.m f (n f x)
→ λf x. fm (fn x)
= λf x. fm+n x

= m + n.

2



Here we are composing fm with fn to get fm+n.
Alternatively, recall that Church numerals act on a function to apply that function repeatedly, and

addition can be viewed as repeated application of the successor function, so we could define

ADD
4
= λm n. m s n.

Similarly, multiplication is just iterated addition, and exponentiation is iterated multiplication:

MUL
4
= λm n. m (ADD n) 0 EXP

4
= λm n. m (MUL n) 1.

Defining subtraction, division, and other arithmetic operations is possible but more tricky.
Church numerals only encode natural numbers, but they can be used to build more complex kinds of

numbers such as integers and floating point numbers.

4 Pairing and Projection

Logic and arithmetic are good places to start, but we still have no useful data structures. For example,
consider ordered pairs. We expect to have a pairing constructor PAIR with projection operations FIRST
and SECOND that obey the following equational specification,

FIRST (PAIR e1 e2) = e1

SECOND (PAIR e1 e2) = e2

PAIR (FIRST p) (SECOND p) = p,

provided p is a pair. We can take a hint from IF. Recall that IF selects one of its two branch options
depending on its Boolean argument. PAIR can do something similar, wrapping its two arguments for later
extraction by some function f :

PAIR
4
= λab. λf. f a b.

Thus PAIR e1 e2 → λf. f e1 e2. To get e1 back out, we can just apply this to TRUE: (λf. f e1 e2) TRUE →
TRUE e1 e2 → e1, and similarly applying it to FALSE extracts e2. Thus we can define

FIRST
4
= λp. p TRUE SECOND

4
= λp. p FALSE.

Again, if p isn’t a term constructed using PAIR, expect the unexpected.

5 Recursion and the Y Combinator

With an encoding for IF, we have some control over the flow of a program. We can also write simple for loops
using the Church numerals n, by applying the Church numeral to the loop body expressed as a function.
However, we do not yet have the ability to write an unbounded while loop or a recursive function.

In ML, we can write the factorial function recursively as

rec fact(n) = if n ≤ 1 then 1 else n*fact(n-1)

But how can we write this in the λ-calculus, where all the functions are anonymous? We must somehow
construct a term FACT that satisfies following equation, assuming appropriate definitions for SUB and a
less-than-or-equal comparison LEQ:

FACT = λn. IF (LEQ n 1) 1 (MUL n (FACT (SUB n 1))) (1)

We can’t just define FACT with this equation, because it appears on the right-hand side. But it turns
out we can define a term that acts in the way we want.
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5.1 Recursion through self-application

Suppose we break up the recursion into two steps. Since FACT can’t refer to itself directly, we need some
way to pass FACT into itself so it can be used for the recursion. We start by defining a function that adds
an extra argument f for passing in something like FACT:

F
4
= λf. λn. IF (LEQ n 1) (1) (MUL n (f (SUB n 1)))

Now, if we just had FACT available, we could pass it to this function and get the FACT we want. Of
course, that’s begging the question. But we do have something rather similar to FACT: this function itself.
That won’t quite work either, because this function expects to receive the extra argument f . So we just
change the function definition so it calls f with an extra argument: f . Call this new function FACT ′:

FACT ′ 4
= λf. λn. IF (LEQ n 1) (1) (MUL n (

(
f f

)
(SUB n 1)))

FACT ′ has the property that if a function just like it is passed to it, it will do what FACT should. Since
(FACT ′ FACT ′) should behave as we want FACT to, we define FACT as exactly this self-application:

FACT
4
= FACT ′ FACT ′

We can now see the recursion working:

FACT(4) = (FACT ′ FACT ′) 4
= (λn. IF (LEQ n 1) 1 (MUL n ((FACT ′ FACT ′) (SUB n 1)))) 4
= IF (LEQ 4 1) 1 (MUL 4 (FACT (SUB 4 1)))
= (MUL 4 (FACT (SUB 4 1)))
= (MUL 4 (FACT 3))
. . .

5.2 Fixed points and the Y combinator

If the function F is passed FACT as an argument, it returns a function that also acts like FACT.
Then we can write equation (1) simply as

FACT = F (FACT)

This shows that what we are looking for is a fixed point (sometimes shortened to fixpoint) of the function
F : an argument FACT that when passed to F , results in the same value FACT. Any solution of (1) will do;
different solutions may disagree on non-integers, but one can show inductively that any solution of (1) will
yield n! on input n. Thus it is only a question of existence.

So the question is, can we in general find a fixed point of an arbitrary function F? And can we do it
within the confines of the lambda calculus? It is not immediately obvious that it is possible. The cardinality
of the possible functions from lambda calculus expressions to other lambda calculus expressions is larger
than that of the lambda calculus expressions themselves, so the (computable) functions expressible in the
lambda calculus are a vanishingly small subset of the possible functions. And we know that some functions,
like the halting problem, are in fact not computable and therefore cannot be written as lambda calculus
expressions.

It turns out that we can use the same self-application trick to construct a term that finds fixed points for
us. The key observation is that we can turn F into FACT ′ by applying it to a self-application term (x x),
and abstracting over the same x:

λx. F (x x) = λx. λn. IF (LEQ n 1) 1 (MUL n ((x x) (SUB n 1))) (2)

Using this, we can define a term that when applied to F , gives us exactly (FACT ′ FACT ′). This term
is called the Y combinator or fixed-point combinator.
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Y
4
= λf. (λx. f (x x)) (λx. f (x x))

Y F = (λx. F (x x)) (λx. F (x x))
= FACT ′ FACT ′ = FACT

The Y combinator is very helpful for producing recursive functions, because it finds fixed points. We
also can see this by considering the term we get when we apply Y to an arbitrary function F :

(λx. F (x x)) (λx. F (x x)).

This is a fixed point of F , since

(λx. F (x x)) (λx. F (x x)) → F ((λx. F (x x)) (λx. F (x x))).

Curiously, although every term is a fixed point of the identity map λx. x, the Y combinator produces a
particularly unfortunate one, namely the divergent term Ω introduced in Lecture 2.

5.3 A call-by-value Y combinator

The Y combinator shown works perfectly in call-by-name evaluation, but in call-by-value evaluation, it
produces divergent functions. The problem is in step 2, where we passed a self-application term (x x)
that can diverge. If that term diverges, the left-hand side of the equation will diverge when applied to an
argument, even though the right-hand side wouldn’t. When the Y combinator is used in a CBV setting, it
tries to fully unroll the recursive function definition before any use of the function, leading to divergence.

The call-by-value divergence problem can be fixed by wrapping the self-application term in another
lambda abstraction: λz. (x x) z. This term yields the same result as (x x) when applied to any argument,
but is a value, and therefore will only be evaluated when it is applied. The effect of wrapping the term is to
delay evaluation as long as possible, simulating what would happen in call-by-name evaluation.

So the call-by-value Y combinator is:

YCBV
4
= λf. (λx. f (λz. (x x) z)) (λx. f (λz. (x x) z))

5.4 Other fixed-point combinators

There other fixed-point combinators. For example, we can observe that since Y F is supposed to be a fixed
point of F , we are trying to solve the equation Y F = F (Y F ), for any F . Therefore Y = λf. f (Y f), which
is a recursive function definition. Directly applying the self-application trick of Section 5.1 to this function
definition, we obtain a fixed-point combinator discovered by Alan Turing:

Θ , (λy.λf.f (y y f)) (λy.λf.f (y y f))

In fact, there are infinitely many fixed-point combinators!
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