
CS611 Lecture 2 Lambda Calculus 27 August, 2006
Scribe: Lecturer: Andrew Myers

1 The Lambda Calculus

Lambda calculus is a notation for describing mathematical functions and programs. It is a mathematical
system for studying the interaction of functional abstraction and functional application. It captures some
of the essential, common features of a wide variety of programming languages. Because it directly supports
abstraction, it is a much more natural model of universal computation than a Turing machine is.

1.1 Syntax

A λ calculus term is:

1. a variable x ∈ Var, where Var is a countably infinite set of variables;

2. a function e0 applied to an argument e1, usually written e0 e1 or e0(e1); or

3. a lambda term, an expression λx. e representing a function with input parameter x and body e. Where
a mathematician might write x 7→ x2, in the λ-calculus we would write λx.x2.

In BNF notation,

e ::= x | λx. e | e0 e1

Note that we used the word term instead of expression. A term is an expression that describes a compu-
tation to be performed. In general, programs may contain expressions that are not terms; for example, type
expressions. However, in the untyped lambda calculus that we are now studying, all expressions are terms.

Parentheses are used just for grouping; they have no meaning on their own. Like other familiar binding
constructs from mathematics (e.g., sums, integrals), lambda terms are greedy, extending as far to the right
as they can. Therefore, the term λx. x λy. y is the same as λx. (x (λy. y)), not (λx. x) (λy. y).

For simplicity, multiple variables may be placed after the lambda, and this is considered shorthand for
having a lambda in front of each variable. For example, we write λxy. e as shorthand for λx. λy. e. This
shorthand is an example of syntactic sugar. The process of removing it in this instance is called currying.

We can apply a curried function like λx. λy. x one argument at a time. Applying it to one argument
results in a function that takes in a value for x and returns a constant function, one that returns the value
of x no matter what argument it is applied to. As this suggests, functions are just ordinary values, and can
be the results of functions or passed as arguments to functions (even to themselves!). Thus, in the lambda
calculus, functions are first-class values. Lambda terms serve both as functions and data.

1.2 Recap—BNF Notation

In the grammar
e ::= x | λx. e | e0 e1

describing the syntax of the pure λ-calculus, the e is not a variable in the language, but a metavariable
representing a syntactic class (in this case λ-terms) in the language. It is not a variable at the level of
the programming language. We use subscripts to differentiate syntactic metavariables of the same syntactic
class. For example, e0, e1 and e all represent λ-terms.

1



1.3 Recap—Variable Binding

Occurrences of variables in a λ-term can be bound or free. In the λ-term λx. e, the lambda abstraction
operator λx binds all the free occurrences of x in e. The scope of λx in λx. e is e. This is called lexical
scoping; the variable’s scope is defined by the text of the program. It is “lexical” because it is possible to
determine its scope before the program runs by inspecting the program text. A term is closed if all variables
are bound. A term is open if it is not closed.

1.4 Digression—Terms and Types

There are different kinds of expressions in a typical programming language: terms and types. We have not
talked about types yet, but we will soon. A term represents a value that exists only at run time; a type is a
compile-time expression used by the compiler to rule out ill-formed programs. For now there are no types.

2 Substitution and β-reduction

Now we get to the question: How do we run a λ-calculus program? The main computational rule is called
β-reduction. This rule applies whenever there is a subterm of the form (λx. e) e′ representing the application
of a function λx. e to an argument e′.

To perform a β-reduction, we substitute the argument e′ for all free occurrences of the formal parameter
x in the body e. This corresponds to our intuition for what the function λx. e means.

We have to be a little careful; we cannot just substitute e′ blindly for x in e, because bad things could
happen which could alter the meaning of expressions in undesirable ways. We only want to replace the free
occurrences of x within e, because any other occurrences are bound to a different binding; they are really
different variables. There are some additional subtleties to substitution that we’ll return to later.

There are many notations for substitution, which can be confusing. Pierce writes [x 7→ e′]e. Other
notations for the same idea are encountered frequently, including e[x 7→ e′], e[x ← e′], e[x := e′]. Because
we will be using brackets for other purposes, we will use the notation e{e′/x}.)

Rewriting (λx. e) e′ to e{e′/x} is the basic computational step of the λ-calculus. In the pure λ-calculus,
we can start with a term and perform β-reductions on subterms in any order. However, for modeling
programming languages, it is useful to restrict which β reductions are allowed and in what order they can
be performed.

3 Call-by-Name and Call-by-Value

In general there may be many possible β-reductions that can be performed on a given λ-term. How do we
choose which beta reductions to perform next? Does it matter?

A specification of which β-reduction to perform next is called a reduction strategy. Let us define a value to
be a closed λ-term to which no β-reductions are possible, given our chosen reduction strategy. For example,
λx.x would always be value, whereas (λx.x)1 would most likely not be.

Most real programming languages based on the λ-calculus use a reduction strategy known as Call By
Value (CBV). In other words, functions may only be applied to (called on) values. Thus (λx.e)e′ only reduces
if e′ is a value v. Here is an example of a CBV evaluation sequence, assuming 3, 4, and S (the successor
function) are appropriately defined.

((λx.λy.y x) 3) S −→ (λy.y 3) S −→ S 3 −→ 4.

Another strategy is call by name (CBN). We defer evaluation of arguments until as late as possible,
applying reductions from left to right within the expression. In other words, we can pass an incomplete
computation to a function as an argument. Terms are evaluated only once their value is really needed.

2



4 Structural Operational Semantics (SOS)

Let’s formalize CBV. First, we need to define the values of the language. These are simply the lambda terms:

v ::= λx. e

Next, we can write inference rules to define when reductions are allowed:

(λx. e) v −→ e{v/x}
[β-reduction]

e1 −→ e′
1

e1 e2 −→ e′
1 e2

e −→ e′

v e −→ v e′

This is an example of an operational semantics for a programming language based on the lambda calculus.
An operational semantics is a language semantics that describes how to run the program. This can be done
through informal human-language text, as in the Java Language Specification, or through more formal rules.
Rules of this form are known as a Structural Operational Semantics (SOS). They define evaluation as the
result of applying the rules to transform the expression, and the rules are defined in term of the structure of
the expression being evaluated.

This kind of operational semantics is known as a small-step semantics because it only describes one step
at a time, by defining a transition relation e −→ e′. A program execution consists of a sequence of these small
steps strung together. An alternative form of operational semantics is a big-step (or large-step) semantics
that describes the entire evaluation of the program to a final value.

As defined above, CBV evaluation is deterministic: there is only one evaluation leading from any given
term. (We leave proving this for later). If we allow evaluation to work on the right-hand side of an application,
evaluation will be nondeterministic:

e2 −→ e′
2

e1 e2 −→ e1 e′
2

We will see other kinds of semantics later in the course, such as axiomatic semantics, which describes the
behavior of a program in terms of the observable properties of the input and output states, and denotational
semantics, which translates a program into an underlying mathematical representation.

Expressed as SOS, CBN has slightly simpler rules:

(λx. e1) e2 −→ e1{e2/x}
[β-reduction]

e0 −→ e′
0

e0 e1 −→ e′
0 e1

We don’t need the rule for evaluating the right-hand side of an application because β-reductions are done
immediately once the left-hand side is a value.

4.1 Ω

Let us define an expression we will call Ω:

Ω = (λx. x x) (λx. x x)

What happens when we try to evaluate it?

Ω = (λx. x x) (λx. x x) −→ (x x){(λx. x x)/x} = Ω

3



We have just coded an infinite loop! When an expression e can go through infinite sequence of evaluation
steps, we write e ⇑. When it evaluates to a value v, we write e ⇓ v or just e ⇓ if we don’t care what the
value is.

What happens if we try using Ω as a parameter? It depends. Consider this example:

e = (λx.(λy.y)) Ω

Using the CBV evaluation strategy, we must first reduce Ω. This puts the evaluator into an infinite loop,
so e ⇑CBV . On the other hand, CBN reduces the term above to λy. y. CBN has an important property:
CBN will not loop infinitely unless every other semantics would also loop infinitely, yet it agrees with CBV
whenever CBV terminates successfully:

e ⇓CBV =⇒ e ⇓CBN

4


