
CS611 Lecture 39 Model Checking, Abstract interpretation 3 December, 2004
Scribe: Krzysztof Ostrowski Lecturer: Andrew Myers

1 Introduction

Throughtout the course we learned about two prominent techniques of reasoning about program behavior
and correctness: dynamic semantics, the most powerful, but also the most computationally intensive method
used only in few specialized applications, and type systems, a leightweight method that exists in some form
in almost all known languages, but that provides relatively little information about a program.

One notable deficiency of type systems is that they are flow insensitive, the typing information represent
properties of parts of the program that do not depend on previously executed code. In contrast to that, in
data flow analysis a program is represented as a graph, its parts as nodes, the flow of execution as edges with
cycles corresponding to loops and fixed points. This representation allows for reasoning about things like
which variables are never used, never read before being overwritten etc., which allows for code optimization.

Type systems are an example of a feature in support for static program analysis, reasoning about prop-
erties of programs that hold during all executions. Both dynamic semantics and static analysis are examples
of formal methods. In practice, we usually rely on more ad-hoc methods such as testing, more feasible in
practice than using theorem provers and more insightful than static analysis. Testing, however, has its own
deficiencies. One problem is writing test cases: not only is it tedious, but we can rarely cover all the possible
situations that may arise. Automatic this process leads to model checking, a technique for verification by
intelligent state-space exploration, used e.g. for the analysis of distributed protocols for its effectiveness in
finding counterexamples. Nevertheless, if the space of program parameteres is large enough, as is usually
the case (often called state explosion), even this technique is very limited.

One answer to this problem is to go back to dynamic semantics, but instead of reasoning about concrete
values or states, to reason about abstractions, sets of values or states, which leads to abstract interpretation,
a technique of reasoning about programs through via formal semantics where states are replaced by sets of
states and inference rules talk about sets of executions. In the following section we present an example of
abstract interpretation technique in the context of a denotational semantics of IMP.

2 Sign Analysis

Let’s imagine that for the purpose of our algorithm we only need to care about the signs of some variables,
our abstraction will therefore need to capture the information about possible signs of numbers stored in them.
We replace the set of values Z = {...,−2,−1, 0, 1, 2, ...} with a power set of A = {−, 0, +}, the set of possible
signs. We will no longer be able to say that a given variable has a specific value (say, 63). Instead, we will
be able to talk about the possible signs: for example, we can say that a value of a variable is nonnegative,
which in our framework is represented as {0, +}. Consequently, the store, previously σ : Var → Z, will now
be a function into P(A), i.e. σ : Var → P(A) = Σ.

In order to accomodate the new values, we also need to modify our arithmetic. Arguments and values of
functions are now sets of signs. For example, consider a successor function, f(n) = n + 1. When applied to
zero or a positive number it will always yield a positive number, whereas when applied to a negative number
it will always return a negative number or zero. We can summarize this finding as:

f({−}) = {−, 0}
f({0}) = {+}
f({+}) = {+}

Values of f for arbitrary sets of signs can be obtained from the above as union of values over their elements.
Using this idea, the following table encodes the semantics of operator +, a version of + in our new framework.

1



- 0 +
- - - A
0 - 0 +
+ A + +

Using this table, we can conclude e.g. that {+, 0} + {0} = {0, +}. Now, to formalize all this, we define the
denotation of arithmetic expressions as A[[a]] : Σ → P(A), and the semantics of our only arithmetic operator
as A[[a1 + a2]]σ = A[[a1]]σ + A[[a2]]σ, with + defined by the table above. The denotation of statements does
not need to be change, it is still C[[c]]σ : Σ → Σ, denotations of simple statements are given below.

C[[skip]]σ = σ

C[[x := a]]σ = σ[x 7→ A[[a]]σ]

We can define denotation of boolean expressions analogously. Note that, since we no longer know the exact
values of variables, we need to reason about all the possible outcomes of comparisons, therefore apart from
true and false, our boolean expressions could have undefined values, which we may conveniently capture by
defining the set of boolean values as the powerset of {true, false}.

The fact that boolean values may be undefined slightly complicates the semantics of if..then..else since
we need to account for both possibilities.

C[[if b then c1 else c2]]σ = (if true ∈ B[[b]]σ then C[[c1]]σ else λx.∅) t (if false ∈ B[[b]]σ then C[[c2]]σ else λx.∅)

What happens here is taking a supremum over states resulting from processing both branches, with λx.∅
representing the bottom of Σ (indeed, it is a ⊥ of Σ since ∅ is a ⊥ for the set of values). Note that in any
case B[[b]] must contain at least one of {true, false}. We can derive the denotation of while in a similar way.

C[[while b do c]]σ = fix(λf.if true ∈ B[[b]]σ then f(C[[c]]σ) else σ)

3 Applications

In practice, the usefullness of abstract interpretation depends on choosing the right abstraction. A too
coarse-grained abstraction may fail to precisely identify problems with a program, whereare a too fine-
grained asbtraction may be hard to reason about. One idea that has recently gained on popularity is
counterexample-driven refinement, shown schematically on Figure 3. The idea is that we have a model
checker that takes in a program and an abstraction and performs an abstract execution, in a way similar to
what we did above, trying to identify problems with the program. If our abstraction turns out to be too
weak to identify problems, a feedback loop is used to refine the abstraction. This process typically involves
a model checker that, guided by the abstract execution, is trying to find a concrete execution of a program,
to determine, for example, which variables of the program should no longer be represented abstractly. This
process proceeds iteratively, gradually refining the abstraction as necessary to determine whether there is a
problem with the program or not.

���������
	�
��
�
�����

��
������ ���
��� �������

������� � � � � � �� ! � ��"�� � �

Figure 1: Counterexample-driven refinement.

A project SLAM at Microsoft (http://research.microsoft.com/slam/), one of the many systems using
this technique, is used to verify correctness of Windows drivers.

2


