
CS611 Lecture 38 Weakest preconditions, verification conditions 2004 December 1
Scribe: Helgi Ingolfsson and Yoni Ben-Simhon Lecturer: Andrew Myers

1 Problems with PCA

Last lecture we dealt with Partial Correctness Assertions of the type {A} c {B}.
This gave us a set of rules to produce statements about a program. But this proof system is not syntax
directed. We have 2 main problems:

1. With the sequence rule
{A} c1 {C} {C} c2 {B}

{A} c1; c2 {B} it is unclear how to choose the set {C}.

2. The consequence rule
|= A ⇒ A′ {A′} c {B′} |= B′ ⇒ B

{A} c {B} doesn’t indicate how to choose the sets
A′ and B′. It is also unclear when to use the consequence rule at all. Not to mention that we need
some theorem prover to proove statments such as |= A ⇒ A′.

So this can’t be use to make an automatic theorem prover. A solution to these problems exists and is
presented below.

2 Weakest Precondition

Given a command c and a postcondition {B} we ask what is the weakest precondition {A} to satisfy the
PCA? The weakest precondition is the largest set of states satisfying the PCA.

(A ⇒ wp(c,B)) ⇒ {A} c {B} (⇔ ∀σ |= A. C[[c]]σ |= B)

[[wpI(c,B)]] = {σ|C[[c]]σ |=I B} where I is an interpretation environment.
So {σ|σ |=I A} ⊆ {σ|C[[c]]σ |=I B} is equivalent to A ⇒ wp(c,B)

We want to have an automatic theorem prover. We will see that we will have to slightly cheat when
dealing with while using weakest precondition.

Weakest Precondition rules

• wpI(skip, B) = {σ| C[[skip]]σ |=I B} = {σ|σ |=I B} = [[B]], i.e. precondition = postcondition.

• wpI(x := a,B) = {σ| σ[x 7→ A[[a]]σ] |=I B} = B{a/x}, this is our substitution lemma.

• wpI(c1; c2, B) = {σ| C[[c2]](C[[c1]]σ) |=I B} = wpI(c1, wpI(c2, B)), so we can push back the weakest
precondition in command sequences.

• wpI(if b then c1 else c2, B) = (b ∧ wpI(c1, B)) ∨ (¬b ∧ wpI(c2, B))

• wpI(while b do c, B) =?. We need Gödel numbers to proove this. It is possible to add them to our
assertion language but it is not practical.

One such non-practical way to deal with while is:
∀k.∀σ0, . . . , σk.[σ = σ0 ∧ ∀i ∈ (0..k).σi |=I b ∧ C[[c]]σi = σi+1] ⇒ σk |=I B

1

3 Verification Conditions

To be able to better handle while loops we introduce verification conditions. Here we push some of the work
to the programmers making them supply the loop invariants. We can make use of these loop invariants in
our proofs if those are supplied.
while b do {D} c, where {D} is the loop invariant, is the format in which the loop invariant is supplied..

Verification Conditions rules

• vc({A} skip {B}) = {A ⇒ B} , since skip doesn’t change anything

• vc({A} x := a {B}) = {A ⇒ B{a/x}}

• vc({A} c1; {D} c2 {B}) = vc({A} c1 {D}) ∧ vc({D} c2 {B}) , though {D} isn’t really necessary.

• vc({A} if b then c1 else c2 {B}) = vc({A ∧ b} c1 {B}) ∧ vc({A ∧ ¬b} c2 {B})

• vc({A} while b do {D} c {B}) = {A ⇒ D, D ∧ ¬b ⇒ B} ∨ vc({D ∧ b} c {D})

4 Proof carrying code

Figure 1: One possible application of verification conditions is proof carrying code

5 Total Correctness

Total correctness is similar to partial correctness, only that we have to show that while loops terminate.
That is ([A]c[B] ⇒ {A}c{B} ∧ c ⇓.
Here we will need a decrrementing function d, such that the loop terminates when d reaches 0.

•
[A ∧ b ∧ d = i]c[A ∧ d < i] |= d ≤ 0 ⇒ ¬b

[A] while b do c [A ∧ ¬b]

2

