
CS611 Lecture 37 Axiomatic semantics 29 November, 2004
Scribe: Yejin Choi, Bryan Silverthorn Lecturer: Andrew Myers

1 Introduction

In this lecture, we will learn techniques for reasoning about the behavior of programs when applied to
sets of states. In particular, we would like to reason about the correctness of programs. Operational and
denotational semantics are in some sense too fine-grained, while practical type systems make only the very
coarse guarantee that a program will never become stuck. Today we will introduce the axiomatic semantics,
which consider programs as predicate transformers: given statements about the set of possible states, we
can determine how executing the program affects those statements.

2 Assertions

An assertion is a predicate that characterizes the set of possible states before and after the execution of a
command.

A partial correctness assertion is an assertion of the form

{A} c {B}

This assertion specifies that, if we start in a state satisfying A and run c, and c terminates, we will be in
a state satisfying B. Note that the condition on the termination of c is what makes this assertion partial.
Here A is called a pre-condition and B is called a post-condition.

A total correctness assertion is given as

[A] c [B] ⇐⇒ {A} c {B} ∧ ∀σ |= A c ⇓

What is an assertion? It is simply a statement in some assertion language that we specify. For IMP, we can
define the syntax for conditions as

Assn 3 A ::= true | false | a1 = a2 | a1 ≤ a2 | A ∧B | A ∨B | A ⇒ B | ¬A | ∀i.A | ∃i.A

Recall the syntax for artithmatic expressions in IMP, defined as

Aexp 3 a ::= n | x | i | a1 + a2 | a1 × a2 |

with the addition of i ∈ IVar, a set of fixed variables associated with assertion quantifiers. This assertion
language is quite powerful; if we had arrays in IMP, we could write assertions such as

∀i.∀j.i ≤ j ⇒ a[i] ≤ a[j]

which asserts that “the array a is sorted.”

Now we can give the semantics of this assertion language, where the “meaning” of an assertion is the set of
satisfying states:

σ ∈ [[A]]I ⇔ σ |=I A

under some environment for fixed vars:
I : IVar → Z

1

allowing us to define the semantics below:

[[true]]I = Σ⊥

[[false]]I = {⊥}
[[A ∧B]]I = [[A]]I ∩ [[B]]I
[[A ∨B]]I = [[A]]I ∪ [[B]]I

[[¬A]] = (Σ⊥ \ [[A]]) ∪ {⊥}
[[∀i.A]]I =

⋂
n∈Z

[[A]]I[i 7→n]

[[∃i.A]]I =
⋃
n∈Z

[[A]]I[i 7→n]

[[a1 = a2]]I = {σ|A[[Î(a1)]]σ = A[[Î(a2)]]σ}

where Î(a) replaces all the occurances of free variables in a with numbers that I maps to. Notice that in
order to compare the values of arithematic expressions, we borrowed the reasoning from the denotational
logic.

3 Hoare Logic

How do we show that some assertion is true? We introduce Hoare logic, a proof system for Partial Correctness
Assertions (PCAs). We define the proof system by induction on the structure of the commands. Notice that
statements look similiar to those of the big step semantics, except that we use assertions in the place of
states.

{A} skip {A}

{B{a/x}} x := a {B}

{A} c1 {C} {C} c2 {B}
{A} c1; c2 {B}

{A ∧ b} c1 {B} {A ∧ ¬b} c2 {B}
{A} if b then c1 else c2 {B}

{A ∧ b} c {A}
{A} while b do c {A ∧ ¬b}

The rules above are straightforward and purely syntax-directed. We need a final rule, however, which
eliminates this simplicity: the “rule of consequence” below

|= A ⇒ A′ {A′} c {B′} |= B′ ⇒ B

{A} c {B}

How do we know that this set of inference rules is reasonable? That is, is it sound? Is it complete? Soundness
and completeness for Hoare logic with proof rules above can be captured as follows;

• Soundness:
` {A} c {B} ⇒ ∀I.σ |=I A ⇒ C[[c]]σ |=I B︸ ︷︷ ︸

|={A} c {B}

2

• Completeness:
|= {A} c {B} ⇒ ` {A} c {B}

A complete Hoare logic is not achievable (blame Gödel), but we can get relative completeness. That is, the
completeness of Hoare logic is relative to our ability to reason about implications in the rule of consequence—
if we had an oracle to take care of the implications, which we know is not possible to obtain, then we would
have completeness.

3.1 Soundness

Let’s start by sketching out a proof of soundness, by induction on ` {A} c {B}

• case {A} skip {A}
σ |=I A

?⇒ C[[skip]]σ︸ ︷︷ ︸
σ

|=I A

This trivially holds, since the denotation of C[[skip]]σ is just σ.

• case {B{a/x}} x := a {B}

σ |=I B{a/x} ?⇒ C[[x := a]]σ︸ ︷︷ ︸
σ[x7→A[[a]]σ]

|=I B

We have C[[x := a]]σ equals to σ[x 7→ A[[a]]σ] from the denotational semantics of an assignment
command. The fact that effect of substitution in B{a/x} abides by the updated state can be shown
by a substitution lemma, proved by induction on B and the structure of arithmetic expressions. Hence
this holds.

• skipping to case while
σ |=I A

?⇒ C[[while b do c]]σ |=I {A ∧ ¬b}

Recall that the denotation of while command was

C[[while b do c]] = fix(λf.λσ.if B[[b]]σ then f∗(C[[c]]σ) else σ︸ ︷︷ ︸
F

)

= fix F

=
⊔
n∈ω

Fn(⊥)

[[while b do c]]σ = (fix F)σ

=
(⊔
n∈ω

Fn(⊥)
)
σ

=
⊔
n∈ω

(
(Fn(⊥))σ

)
The chain of states is either ⊥ v ⊥ v ⊥ v ⊥ v · · · or ⊥ v · · · v ⊥ v σ′ v σ′ v σ′ v · · · because
Σ = Var → Z is a discrete CPO. We will show that in any case,

∀n.Fn(⊥)σ |=I {A ∧ ¬b}

holds, by induction on n

– base n = 0 : ⊥ |=I A ∧ ¬b; anything trivially holds at bottom.

– induction : to be continued.

3

