
CS611 Lecture 32 Equirecursive Types 17 November, 2004
Scribe: Dan Sheldon and Chun-Nam Yu Lecturer: Andrew Myers

Type coercion

Recall the subtype relationship and its subset interpretation:

τ1 ≤ τ2 ⇒ [[τ1]] ⊆ [[τ2]]

We can restate the subtype relationship as the logical statement τ1 inhabited ⇒ τ2 inhabited. But in the
Curry-Howard correspondence, the statement “τ1 inhabited” is the logical interpretation of the type τ1. Since
implication in propositional logic corresponds to function types, we can conclude that the type τ1 → τ2 is
inhabited.

Given τ1 ≤ τ2, we can look at a function e from τ1 to τ2 called an embedding, and a function p from τ2

back to τ1 called a projection.

p

e

t1

t2

A nice property for such functions to have is that no information loss occurs – that is, applying the embedding
followed by projection yields the original term.

We introduce a function called the coercion function to do the computational work of subtyping:

Θ(τ1 ≤ τ2) : τ2 → τ2

Then we can rewrite the traditional subsumption rule:

Γ ` e : τ ′ ` τ ′ ≤ τ

Γ ` e : τ

Using the coercion function:
Γ ` e : τ ′ ` Θ(τ ′ ≤ τ) : τ ′ → τ

Γ ` Θ(τ ′ ≤ τ)e : τ

Here are the standard coercion functions for different subtype relationships:

Θ(τ ≤ 1) = λx : τ.unit

Θ(τ1 ∗ τ2 ≤ τ ′
1 ∗ τ ′

2) = λx :τ1 ∗ τ2. 〈Θ(τ1 ≤ τ ′
1)(left x),Θ(τ2 ≤ τ ′

2)(right x)〉
Θ(τ1 + τ2 ≤ τ ′

1 + τ ′
2) = λx ∈ τ1 + τ2.case x of

λy : τ1.inlτ ′
1+τ ′

2
Θ(τ1 ≤ τ ′

1)y
| λy : τ2.inrτ ′

1+τ ′
2
Θ(τ2 ≤ τ ′

2)y
Θ(τ1 → τ2 ≤ τ ′

1 → τ ′
2) = λf : τ1 → τ2.λx : τ ′

1.Θ(τ2 ≤ τ ′
2)f(Θ(τ ′

1 ≤ τ1)x)

1



Type equivalence

Let’s suppose we have two recursive types T and S obeying the following type equations:

T = (T → int) → int
S = S → int

Using recursive types, we would express them as:

T = µX.(X → int) → int
S = µX.X → int

Now we would like to define a notion of equivalence of types so we can say τ1
∼= τ2, and write a new

subsumption rule for type equivalence:
Γ ` e : τ ′ ` τ ′ ∼= τ

Γ ` e : τ

But how do we define equivalence, especially for recursive types? We’ll call types equivalent if their (possibly
infinite) expansions are the same. For example, the infinite expansions of T and S are the same. It is easy
to see graphically:

int

int

int...

int

int

int...

S = T =

Implementation

How can we make concrete this intuitive idea of two types being equivalent if their “infinite” representations
are the same? Consider the following two graph representations of S and T :

S

int

T

int

int

We say two types are equivalent if all paths from the root always get to equivalent nodes. The equiv-
alence can be checked using algorithms similar to those for checking graph isomorphism or equivalence of
deterministic finite automata. However, we can also prove the equivalence of types using inference rules.
Define

E := ∅ | E : τ1
∼= τ2

Judgement E ` τ1
∼= τ2

Inference rules:
τ1
∼= τ2 ` τ1

∼= τ2

E,µX.τ ∼= τ ′ ` τ{µX.τ/X} ∼= τ ′

E ` µX.τ ∼= τ ′
E ` τ1

∼= τ ′
1 E ` τ2

∼= τ ′
2

E ` τ1 ∗ τ2
∼= τ ′

1 ∗ τ ′
2

2



Example

We want to prove the equivalence of S and T :

The proof tree:

S ∼= T, S → int ∼= T, S ∼= T → int ` S ∼= T ` int ∼= int

S ∼= T, S → int ∼= T, S ∼= T → int ` S → int ∼= T → int

S ∼= T, S → int ∼= T ` S ∼= T → int ` int ∼= int

S ∼= T, S → int ∼= T ` S → int ∼= (T → int) → int

S ∼= T ` S → int ∼= T
` µX.X → int ∼= µX.(X → int) → int

Subtyping

The rules for subtyping on recursive types look just like the rules for type equivalence except that we replace
∼= with ≤. We can then write coercion functions to justify these subtyping rules. One change we will need
to make is to give the coercion functions appearing in the context E names so they can be used. So the
context E has the form x1 : τ1 ≤ τ ′

1, . . . , xn : τn ≤ τ ′
n. Then the coercion function for Θ(E ` µX.τ ≤ τ ′) is

as follows:

Θ(E ` µX.τ ≤ τ ′) = rec f :µX.τ → τ ′.

λx :µX.τ.

Θ(E, f : µX.τ ≤ τ ′ ` τ{µX.τ/X} ≤ τ ′)
(unfoldµX.τx)

The coercion function the other way will look similar but use fold. These coercion functions give us a
translation from equirecursive types to isorecursive types. So equirecursive types are no more powerful than
isorecursive types, but their convenience does not necessarily come at a cost.

3


