
CS611 Lecture 29 Types as propositions 8 November 2004
Scribe: Mike George, K. Vikram Lecturer: Andrew Myers

The System F or the λ→ type system that we had been looking at so far has a deep connection to
propositional logic (in particular first order propositional logic). The key feature of these systems is that
they are constructive (also known as intuitionistic) in nature. In other words, such systems need a witness
for any assertion that is proved. The basic philosophy behind intuitionism is that the existence of an object
is equivalent to the possibility of construction. This contrasts with the classical approach to mathematics,
which states that the existence of an entity can be proved by refuting its non-existence. As a result, the
rules of classical logic which involve negation are not part of constructive systems. For instance, rules such
as

φ ∨ ¬φ or
¬¬φ

φ

have no place in constructive logic.
To show this correspondence between type systems and logic, we first describe the logic system that

corresponds to a traditional type system. The syntax of this logic is as follows:

φ ::= T | F | φ1 ⇒ φ2 | φ1 ∧ φ2 | φ1 ∨ φ2

| ∀X ∈ S.φ | ∃X ∈ S.φ | X

For the definition of implication (⇒), we include assumptions in our judgments. For instance, if we
wanted to prove φ, we have our judgment of the following form

φ1, φ2, ..., φn ` φ

This notation means that assuming a set of “assertions”, φ1, φ2, ..., φn we prove that proposition φ holds.
With this notation, we have the following rules that define ⇒

Γ, φ1 ` φ2

Γ ` φ1 ⇒ φ2 (introduction rule)

Γ ` φ1 ⇒ φ2 Γ ` φ1

Γ ` φ2 (elimination rule or modus ponens)

The axioms in this system are

Γ, φ ` φ and T

The rules for conjunction (∧) and disjunction (∨) are

Conjunction ☞

Γ ` φ1 Γ ` φ2

Γ ` φ1 ∧ φ2

Γ ` φ1 ∧ φ2

Γ ` φ1

Γ ` φ1 ∧ φ2

Γ ` φ2

(introduction rule) (elimination rules)

Disjunction ☞

Γ ` φ1

Γ ` φ1 ∨ φ2

Γ ` φ2

Γ ` φ1 ∨ φ2

Γ ` φ1 ∨ φ2 Γ ` φ1 ⇒ φ3 Γ ` φ2 ⇒ φ3

φ3

(introduction rules) (elimination rule)

The reader might have noticed that there is no rule which can be used for a ‘proof by contradiction’ in
this logic. The elimination rule for disjunction involves a negation in classical logic, whereas in the system
under consideration we have avoided the use of negation.

The rules for the universal quantifier are

1

Γ, X ∈ S ` φ

Γ ` ∀X ∈ S.φ

Γ ` ∀X ∈ S.φ Γ ` A ∈ S

Γ ` φ{A/X}

Example: In this proof system let us now try to prove ∀X, Y, Z.(X ⇒ Y) ∧ (Y ⇒ Z) ⇒ (X ⇒ Z). The
proof of this would be

∆; Γ ` (X ⇒ Y) ∧ (Y ⇒ Z)
∆; Γ ` Y ⇒ Z

∆; Γ ` (X ⇒ Y) ∧ (Y ⇒ Z)
∆; Γ ` X ⇒ Y ∆; Γ ` X

∆; Γ ` Y

X, Y, Z ∈ prop; (X ⇒ Y) ∧ (Y ⇒ Z), X ` Z

X, Y, Z ∈ prop; (X ⇒ Y) ∧ (Y ⇒ Z) ` X ⇒ Z

X, Y, Z ∈ prop ` (X ⇒ Y) ∧ (Y ⇒ Z) ⇒ (X ⇒ Z)

where ∆ ≡ X, Y, Z ∈ prop and Γ ≡ (X ⇒ Y) ∧ (Y ⇒ Z), X. ∆ is usually just written as a list of names
indicating that these names stand for arbitrary propositions and Γ is a list of propositions.

Let us now see the correspondence to type systems. We shall list here the various rules in a type system
and show the corresponding rule in the propositional logic described above.

Type System Rule Corresponding Propositional Logic Rule

Γ, x : τ ` x : τ Γ, φ ` φ

unit : 1 b : B T

Γ, x : τ1 ` e : τ2

Γ ` λx : τ1.e : τ1 → τ2

Γ, φ1 ` φ2

Γ ` φ1 ⇒ φ2

Γ ` e0 : τ1 → τ2 Γ ` e1 : τ1

Γ ` e0 e1 : τ2

Γ ` φ1 ⇒ φ2 Γ ` φ1

Γ ` φ2

Γ ` e1 : τ1 Γ ` e2 : τ2

Γ ` (e1, e2) : τ1 ∗ τ2

Γ ` φ1 Γ ` φ2

Γ ` φ1 ∧ φ2

Γ ` e : τ1 ∗ τ2

Γ ` (left e) : τ1

Γ ` φ1 ∧ φ2

Γ ` φ1

Γ ` e : τ1 ∗ τ2

Γ ` (right e) : τ2

Γ ` φ1 ∧ φ2

Γ ` φ2

Γ ` e : τ1

Γ ` (inl e) : τ1 + τ2

Γ ` φ1

Γ ` φ1 ∨ φ2

Γ ` e : τ2

Γ ` (inr e) : τ1 + τ2

Γ ` φ2

Γ ` φ1 ∨ φ2

Γ ` e1 : τ1 + τ2 Γ ` e1 : τ1 → τ3 Γ ` e2 : τ2 → τ3

Γ ` case e of e1|e2 : τ3

Γ ` φ1 ∨ φ2 Γ ` φ1 ⇒ φ3 Γ ` φ2 ⇒ φ3

φ3

∆, X; Γ ` e : σ

∆; Γ ` ΛX.e : ∀X.σ

Γ, X ∈ S ` φ

Γ ` ∀X ∈ S.φ

∆; Γ ` e : ∀X.σ

∆; Γ ` e[τ] : σ{τ/X}
Γ ` ∀X ∈ S.φ Γ ` A ∈ S

Γ ` φ{A/X}

2

The above correspondence is obtained by essentially replacing a φ by a τ .
Given that we have this exact correspondence between typing rules in our type system and inference rules

in constructive logic, we also have a correspondence between well-typed terms and proofs. In particular,
we can view well-typed programs as proofs of theorems, and vice versa. For example, we can construct the
following program:

ΛX.ΛY.ΛZ. λp : (X → Y) ∗ (Y → Z). λq :X.(right p) ((left p) q)

which corresponds to the logical statement

∀X, Y, Z.(X ⇒ Y) ∧ (Y ⇒ Z) ⇒ (X ⇒ Z)

This correspondence between the terms (or their types) and proofs of propositions is also known as the
Curry-Howard Correspondence.

Under this translation, the logical interpretation of the type τ is that the type τ is inhabited, i.e. there
are some computations that result in type τ . Thus, the program can be thought of as method for producing
the computation that results in type τ , which in turns proves that τ is inhabited. The fact that the rules
match up exactly means that if we have a well-typed program, and we think of it as a proof, then each step
in that proof is valid logically.

Here is a table which shows how to translate concepts between type theory and logic:

Types Propositions
Well-formed terms Proofs
Soundness and strong normalization Soundness
type constructors →, ∗, and + respectively logical connectives ⇒, ∧, and ∨ respectively
Abstracting over types using Λ Abstracting over propositions using ∀
Base types, such as 1 and int, which we assume
are inhabited

true

We can introduce a type 0 which is not inhabited,
i.e. which no computation can return.

false

A pair of functions, one of type τ1 → τ2 and the
other of type τ2 → τ1 (possibly but not necessarily
an isomorphism of domains).

A logical equivalence φ1 ≡ φ2.

Given this translation of concepts, we can begin to take ideas from logic and pull them back to create
ideas in type systems, which we will see are actually familiar concepts that we have seen before. For example,
we can pull back the following logical identity:

A ∧B ⇒ C ≡ A ⇒ (B ⇒ C)

and we see that there should be functions between the types τ1 ∗ τ2 → τ3 and τ1 → τ2 → τ3. But we’ve
already seen these functions: the curry operator takes something of the form τ1 ∗ τ2 → τ3 and produces
something of the type τ1 → τ2 → τ3, and the uncurry operator goes in the other direction. Note that the
logical equivalence doesn’t imply that the two corresponding functions are inverses as they are in this case,
but in practice they often are.

Another example of something we might add to our logic and then pull back to our type system is
existential quantifiers. If we pull the concept of existential quantifiers back into a type system, we get
universal types, which will be discussed further in lecture 34.

A third example of the correspondence between types and logic is the connection between continuation
and logical negation. τ -Continuations (i.e. a continuation that expects a value of type τ) can be thought
of as computations that don’t return, which in turn can be thought of as functions of the type τ → 0. On
the other hand, for any proposition φ, ¬φ is logically equivalent to φ ⇒ false, so using the correspondence
above, we see that ¬φ corresponds to a τ continuation.

Now, constructive logic does not permit us to reduce ¬¬φ to φ, but there is a sound translation from
logical expressions to logical expressions given by replacing every term φ by ¬¬φ. What happens if we pull

3

this translation back to our type system? We want to replace a type τ by (τ → 0) → 0, so we might try
something like:

[[Γ ` n : Z]] = λk : Z → 0.k n

[[Γ ` x : τ]] = λk : τ → 0.k x

To figure out the translations of applications and lambdas, lets first look at the types. We’ll take the type of
a lambda term τ1 → τ2 and think of it as the proposition φ1 ⇒ φ2. Applying our double negation translation,
we have ¬¬(φ1 ⇒ ¬¬φ2), which as a type is written

((τ1 → (τ2 → 0) → 0) → 0) → 0

Let’s try to construct a term of this type, given a lambda term of type τ1 → τ2:

[[Γ ` λx : τ1.e : τ1 → τ2]] = λk : (τ1 → (τ2 → 0) → 0) → 0.

k (λx : τ1.λk′ : τ2 → 0. [[Γ, x : τ1 ` e : τ2]]︸ ︷︷ ︸
(τ2→0)→0

k′)

Finally, we can translate applications. Given an expression Γ ` e0 e1 : τ , we know that Γ ` e0 : τ ′ → τ
and Γ ` e1 : τ ′, so we know that [[Γ ` e0 : τ ′ → τ]] has type ((τ ′ → (τ → 0) → 0) → 0) → 0, and
[[Γ ` e1 : τ ′]] has type (τ ′ → 0) → 0. Thus, let’s construct a translation that has the right type (namely ¬¬φ
or (τ → 0) → 0):

[[Γ ` e0 e1 : τ]] = λk : τ → 0. [[Γ ` e0 : τ ′ → τ]]︸ ︷︷ ︸
((τ ′→(τ→0)→0)→0)→0

(λf : τ ′ → (τ → 0) → 0. [[Γ ` e1 : τ ′]]︸ ︷︷ ︸
(τ ′→0)→0

(λv : τ ′.f v k))

A quick check shows that this expression type checks, and has the desired type.
All of these expressions have the right type, but are they really an accurate translation of our original

terms? And even if it is, why is it interesting? The answer is that if we ignore all of the typing annotations,
then this is exactly our CPS translation! This shows that the process of CPS translation is completely
analogous to adding some double negations into the logical statements that mirror our type system.

4

