1 Strong normalization and logical relations

We want to prove all terms terminate. In other words we want to show that every expression has a normal form. It agrees with the denotational semantics at base types and this implies strong normalization. But both these facts will require a new proof technique, logical relations.

We prove by induction on typing derivation. We want the following as our induction hypothesis

$$
\begin{equation*}
\vdash e: \tau \Longrightarrow \exists v . e \longrightarrow^{*} v \tag{1}
\end{equation*}
$$

We can show that this easily holds for the base types.

$$
\vdash e: B \wedge e \longrightarrow^{*} v \Longleftrightarrow \mathcal{C} \llbracket \vdash e: B \rrbracket \emptyset=v
$$

Consider at this typing inference rule

$$
\frac{\vdash e_{0}: \tau_{1} \rightarrow \tau_{2} \vdash e: \tau_{1}}{\vdash e_{0} e_{1} \tau_{2}}
$$

Just because e_{0} terminates, it does not imply that e_{0}, it does not imply that e_{0} when e_{1} is substituted will terminate. Hence our induction hypothesis is not strong enough.

Idea: Define a family of relations \mathcal{R}_{τ} indexed on type. The logical relation is defined by induction on type structure. $\mathcal{R}_{\tau}(e)$ is a unary relation with $e \in \mathcal{R}_{\tau}$. So our induction hypothesis would be now.

$$
\mathcal{R}_{\tau}(e) \Longrightarrow \vdash e . \tau \wedge \exists v . e \longrightarrow^{*} v
$$

Notice that we define the logical relation in such a way that it implies the fact that we are trying to prove. We formally define the logical relation as:

$$
\begin{aligned}
& \mathcal{R}_{B}(e) \quad \equiv \vdash e: B \wedge \exists v . e \longrightarrow \longrightarrow^{*} v \\
& \mathcal{R}_{\tau_{1} \rightarrow \tau_{2}}(e) \equiv e: \tau_{1} \rightarrow \tau_{2} \wedge \exists v . e \rightarrow^{*} v \wedge \forall e^{\prime} . \mathcal{R}_{\tau_{1}}\left(e^{\prime}\right) \Longrightarrow \mathcal{R}_{\tau_{2}}\left(e e^{\prime}\right)
\end{aligned}
$$

Lemma $1 \mathcal{R}_{\tau}(e) \Longrightarrow \vdash e . \tau \wedge \exists v . e \longrightarrow{ }^{*} v$
Proof: We need an additional lemma for this.
Lemma $2 \vdash e: \tau \wedge e \rightarrow e^{\prime} \wedge \mathcal{R}_{\tau}\left(e^{\prime}\right) \Longleftrightarrow \mathcal{R}_{\tau}(e)$
Proof: We prove by induction on τ.

- $\tau=B . \mathcal{R}_{\tau}\left(e^{\prime}\right) \Longrightarrow e^{\prime} \longrightarrow{ }^{*} v$. Hence $e \longrightarrow e^{\prime} \longrightarrow{ }^{*} v$
- $\tau=\tau_{1} \rightarrow \tau_{2}$. Assume an arbitrary $e^{\prime \prime}$ where $\mathcal{R}_{\tau_{1}}\left(e^{\prime \prime}\right)$.

$$
\begin{aligned}
e e^{\prime \prime} \rightarrow e^{\prime} e^{\prime \prime} & \Longrightarrow e^{\prime} e^{\prime \prime} \longrightarrow^{*} v \\
& \Longrightarrow \forall e^{\prime \prime} \cdot \mathcal{R}_{\tau_{1}}\left(e^{\prime \prime}\right) \\
& \Longrightarrow \mathcal{R}_{\tau_{2}}\left(e^{\prime} e^{\prime \prime}\right)
\end{aligned}
$$

Now we proceed on to the strong normalization hypothesis that every typed-lambda term has normal form. This we prove by induction on typing derivations.

$$
\overline{\Gamma \vdash \lambda x: \tau_{1} \cdot e^{\prime}: \tau_{1} \rightarrow \tau_{2}}
$$

Consider $\Gamma \vdash e: \tau \Longrightarrow \mathcal{R}_{\tau}(e)$, if free terms are in e then it will not reduce to a value. For this we introduce a substitution operator γ.

$$
\gamma=\left\{x_{1} \mapsto v_{1}, x_{2} \mapsto v_{2}, \ldots, x_{n} \mapsto v_{n}\right\}
$$

We lift this definition to expression in the following manner: $\gamma(e)$ means e with $x_{1}, x_{2}, \ldots, x_{n}$ substituted by γ, i.e. $\gamma(e)=e\left\{v_{1} / x_{1}, \ldots, v_{n} / x_{n}\right\}$.

We say a substitution satisfies Γ as:

$$
\begin{aligned}
\gamma \vDash \Gamma \Longleftrightarrow & \operatorname{dom}(\gamma)=\operatorname{dom}(\Gamma) \\
& \wedge \forall x \in \operatorname{dom}(\gamma) \cdot \gamma(x) \in \text { Value } \wedge \mathcal{R}_{\Gamma(x)}(\gamma(x))
\end{aligned}
$$

We can say $\gamma(x) \in$ Value because we are having call by value semantics. If it were Call by Name semantics we have to show for Subst $\gamma(e)=\left\{x_{1} \mapsto e_{1}, x_{2} \mapsto e_{2}, \ldots, x_{n} \mapsto e_{n}\right\}$.

Let us recall the substitution lemma

$$
\Gamma \vdash e: \tau \wedge \gamma \vDash \Gamma \Longrightarrow \gamma(e): \tau
$$

Our induction hypothesis now turns out to be

$$
\Gamma \vdash e: \tau \wedge \gamma \models \Gamma \Longrightarrow \mathcal{R}_{\tau}(\gamma(e))
$$

Strong normalization: We specialize to $\Gamma=\emptyset, \gamma=\emptyset$. So if we prove our induction hypothesis we are done by setting $\Gamma=\emptyset$ and $\gamma=\emptyset$.

We now show that $\Gamma \vdash e: \tau \wedge \gamma \vDash \Gamma \Longrightarrow R_{\tau}(\gamma(e))$ using the substitution lemma. Recall the syntax of λ^{\rightarrow}.

$$
e::=b|x| e_{0} e_{1} \mid \lambda x: \tau . e
$$

So we have the following cases:

- Case $e=b$: Since b is a base value, $\vdash e: B \wedge b \longrightarrow^{*} v$. Thus, by the definition of logical relations, $R_{B}(\gamma(b))$.
- Case $e=x$: We need to show that $\Gamma \vdash x: \tau \wedge \gamma \vDash \Gamma \Longrightarrow R_{\tau}(\gamma(x))$. Since x is a variable and $\Gamma \vdash x: \tau$, so $\tau=\Gamma(x)$ and $\vdash e: \Gamma(x)$. Moreover, since the evaluation rules for λ^{\rightarrow} is CBV, $\gamma(x)$ is a value. Therefore, $R_{\tau}(\gamma(x))$.
- Case $e=e_{0} e_{1}$: We need to show that $\Gamma \vdash e_{0} e_{1}: \tau \wedge \gamma \vDash \Gamma \Longrightarrow R_{\tau}\left(\gamma\left(e_{0} e_{1}\right)\right)$. By typing derivation, we have:

$$
\frac{\Gamma \vdash e_{0}: \tau_{1} \rightarrow \tau \quad \Gamma \vdash e_{1}: \tau_{1}}{\Gamma \vdash e_{0} e_{1}: \tau}
$$

Thus, by the induction hypothesis on the two typing judgments, $R_{\tau_{1} \longrightarrow \tau}\left(\gamma\left(e_{0}\right)\right)$ and $R_{\tau_{1}}\left(\gamma\left(e_{1}\right)\right)$. It then follows from the definition of $R_{\tau_{1} \rightarrow \tau}$ that $R_{\tau}\left(\gamma\left(e_{0}\right) \gamma\left(e_{1}\right)\right)$. And finally, $R_{\tau}\left(\gamma\left(e_{0}\right) \gamma\left(e_{1}\right)\right)=R_{\tau}\left(\gamma\left(e_{0} e_{1}\right)\right)$.

- Case $e=\lambda x: \tau_{1} . e_{2}$: Assume $\Gamma \vdash \lambda x: \tau_{1} . e_{2}: \tau_{1} \rightarrow \tau_{2} \wedge \gamma \vDash \Gamma$. In order to show that $R_{\tau_{1} \rightarrow \tau_{2}}(e)$, we need to show that

$$
\left(\vdash \gamma(e): \tau_{1} \rightarrow \tau_{2}\right) \wedge\left(\exists v \cdot \gamma(e) \longrightarrow^{*} v\right) \wedge\left(\forall e^{\prime \prime} . R_{\tau_{1}}\left(e^{\prime \prime}\right) \Longrightarrow R_{\tau_{2}}\left(\gamma(e) e^{\prime \prime}\right)\right)
$$

For the first clause, it can be shown by using the substitution lemma on our assumptions, i.e.

$$
\Gamma \vdash \lambda x: \tau_{1} \cdot e_{2}: \tau_{1} \rightarrow \tau_{2} \wedge \gamma \models \Gamma \Longrightarrow \quad \vdash \gamma\left(\lambda x: \tau_{1} \cdot e_{2}\right): \tau_{1} \rightarrow \tau_{2}
$$

The second clause follows from the definition of $\gamma, \gamma\left(\lambda x: \tau_{1} \cdot e_{2}\right)=\lambda x: \tau_{1} \cdot \gamma\left(e_{2}\right)$, which is a value. We now need to prove the third clause.
Consider an arbitrary $e^{\prime \prime}$ and assume $R_{\tau_{1}}\left(e^{\prime \prime}\right)$. It needs to be shown that $R_{\tau_{2}}\left(\gamma(e) e^{\prime \prime}\right)$. We first note that $\gamma(e)=\lambda x: \tau_{1} .(\gamma \backslash x) e_{2}$, where $\gamma \backslash x$ is simply γ on all values except x. And since the evaluation rules of λ^{\rightarrow} is CBV, we have the following

$$
\begin{aligned}
& \gamma(e)\left(e^{\prime \prime}\right) \longrightarrow{ }^{*} \gamma(e) v^{\prime \prime} \\
\longrightarrow & \left((\gamma \backslash x)\left(e_{2}\right)\right)\left\{v^{\prime \prime} / x\right\}=\gamma^{\prime}\left(e_{2}\right)
\end{aligned}
$$

where $\gamma^{\prime}=\gamma\left[x \mapsto v^{\prime \prime}\right]$. Recall the lemma

$$
\vdash e: \tau \wedge e \longrightarrow e^{\prime} \wedge R_{\tau}\left(e^{\prime}\right) \Longleftrightarrow R_{\tau}(e)
$$

Thus, if $R_{\tau_{2}}\left(\gamma^{\prime}\left(e_{2}\right)\right)$, then $R_{\tau_{2}}\left(\gamma(e) e^{\prime \prime}\right)$. Therefore, we now only need to show $R_{\tau_{2}}\left(\gamma^{\prime}\left(e_{2}\right)\right)$.

We now prove this by the typing derivations of one of our assumptions. Recall the assumption, $\Gamma \vdash \lambda x: \tau_{1} . e: \tau_{1} \rightarrow \tau_{2}$. Its typing derivation has the form

$$
\frac{\Gamma, x: \tau_{1} \vdash e_{2}: \tau_{2}}{\Gamma \vdash \lambda x: \tau_{1} \cdot e_{2}: \tau_{1} \rightarrow \tau_{2}}
$$

It is now important to notice that $\gamma^{\prime} \models \Gamma, x: \tau_{1}$. This is because $\gamma \vDash \Gamma$ and $\gamma^{\prime}(x)=v^{\prime \prime} \in R_{\Gamma(x)}$, where $\Gamma(x)=\tau_{1}$. Hence, by our induction hypothesis, $\gamma^{\prime}\left(e_{2}\right) \in R_{\tau_{2}}$, and this completes our proof.

Logical relations is a powerful technique that can be used to prove properties of more complex languages.

