
CS611 Lecture 25 Logical relations and strong normalization 29 October, 2004
Scribe: Patrick N and Muthuramakrishnan V Lecturer: Andrew Myers

1 Strong normalization and logical relations

We want to prove all terms terminate. In other words we want to show that every expression has a normal
form. It agrees with the denotational semantics at base types and this implies strong normalization. But
both these facts will require a new proof technique, logical relations.

We prove by induction on typing derivation. We want the following as our induction hypothesis

` e : τ =⇒ ∃v.e −→∗ v (1)

We can show that this easily holds for the base types.

` e : B ∧ e −→∗ v ⇐⇒ C[[` e : B]]∅ = v

Consider at this typing inference rule

` e0 : τ1 → τ2 ` e : τ1

` e0 e1τ2

Just because e0 terminates, it does not imply that e0, it does not imply that e0 when e1 is substituted will
terminate. Hence our induction hypothesis is not strong enough.

Idea: Define a family of relations Rτ indexed on type. The logical relation is defined by induction on
type structure. Rτ (e) is a unary relation with e ∈ Rτ . So our induction hypothesis would be now.

Rτ (e) =⇒ ` e.τ ∧ ∃ v.e −→∗ v

Notice that we define the logical relation in such a way that it implies the fact that we are trying to prove.
We formally define the logical relation as:

RB(e) ≡ ` e : B ∧ ∃v.e −→∗ v
Rτ1→τ2(e) ≡ e : τ1 → τ2 ∧ ∃v.e →∗ v ∧ ∀e′.Rτ1(e

′) =⇒ Rτ2(e e′)

Lemma 1 Rτ (e) =⇒ ` e.τ ∧ ∃ v.e −→∗ v

Proof: We need an additional lemma for this.

Lemma 2 ` e : τ ∧ e → e′ ∧ Rτ (e′) ⇐⇒ Rτ (e)

Proof: We prove by induction on τ .

• τ = B. Rτ (e′) =⇒ e′ −→∗ v. Hence e −→ e′ −→∗ v

• τ = τ1 → τ2. Assume an arbitrary e′′ where Rτ1(e
′′).

e e′′ → e′ e′′ =⇒ e′ e′′ −→∗ v
=⇒ ∀e′′.Rτ1(e

′′)
=⇒ Rτ2(e

′ e′′)

Now we proceed on to the strong normalization hypothesis that every typed-lambda term has normal form.
This we prove by induction on typing derivations.

Γ ` λx :τ1. e′ : τ1 → τ2

Consider Γ ` e : τ =⇒ Rτ (e), if free terms are in e then it will not reduce to a value. For this we introduce
a substitution operator γ.

γ = {x1 7→ v1, x2 7→ v2, . . . , xn 7→ vn}

1

We lift this definition to expression in the following manner: γ(e) means e with x1, x2, . . . , xn substituted
by γ, i.e. γ(e) = e{v1/x1, . . . , vn/xn}.

We say a substitution satisfies Γ as:

γ |= Γ ⇐⇒ dom(γ) = dom(Γ)
∧ ∀x ∈ dom(γ).γ(x) ∈ Value ∧RΓ(x)(γ(x))

We can say γ(x) ∈ Value because we are having call by value semantics. If it were Call by Name
semantics we have to show for Subst γ(e) = {x1 7→ e1, x2 7→ e2, . . . , xn 7→ en}.

Let us recall the substitution lemma

Γ ` e : τ ∧ γ |= Γ =⇒ γ(e) : τ

Our induction hypothesis now turns out to be

Γ ` e : τ ∧ γ |= Γ =⇒ Rτ (γ(e))

Strong normalization: We specialize to Γ = ∅, γ = ∅. So if we prove our induction hypothesis we are done
by setting Γ = ∅ and γ = ∅.

We now show that Γ ` e : τ ∧ γ |= Γ =⇒ Rτ (γ(e)) using the substitution lemma. Recall the syntax of
λ→.

e ::= b | x | e0e1 | λx :τ. e

So we have the following cases:

• Case e = b: Since b is a base value, ` e : B ∧ b −→∗ v. Thus, by the definition of logical relations,
RB(γ(b)).

• Case e = x: We need to show that Γ ` x : τ ∧ γ |= Γ =⇒ Rτ (γ(x)). Since x is a variable and
Γ ` x : τ , so τ = Γ(x) and ` e : Γ(x). Moreover, since the evaluation rules for λ→ is CBV, γ(x) is a
value. Therefore, Rτ (γ(x)).

• Case e = e0 e1: We need to show that Γ ` e0 e1 : τ ∧ γ |= Γ =⇒ Rτ (γ(e0 e1)). By typing derivation,
we have:

Γ ` e0 : τ1 → τ Γ ` e1 : τ1

Γ ` e0 e1 : τ

Thus, by the induction hypothesis on the two typing judgments, Rτ1−→τ (γ(e0)) and Rτ1(γ(e1)). It then
follows from the definition of Rτ1→τ that Rτ (γ(e0) γ(e1)). And finally, Rτ (γ(e0) γ(e1)) = Rτ (γ(e0 e1)).

• Case e = λx : τ1. e2: Assume Γ ` λx : τ1.e2 : τ1 → τ2 ∧ γ |= Γ. In order to show that Rτ1→τ2(e), we
need to show that

(` γ(e) : τ1 → τ2) ∧ (∃v.γ(e) −→∗ v) ∧ (∀e′′.Rτ1(e
′′) =⇒ Rτ2(γ(e) e′′))

For the first clause, it can be shown by using the substitution lemma on our assumptions, i.e.

Γ ` λx :τ1. e2 : τ1 → τ2 ∧ γ |= Γ =⇒ ` γ(λx :τ1. e2) : τ1 → τ2

The second clause follows from the definition of γ, γ(λx : τ1. e2) = λx : τ1. γ(e2), which is a value. We
now need to prove the third clause.

Consider an arbitrary e′′ and assume Rτ1(e
′′). It needs to be shown that Rτ2(γ(e) e′′). We first note

that γ(e) = λx : τ1. (γ\x) e2, where γ\x is simply γ on all values except x. And since the evaluation
rules of λ→ is CBV, we have the following

γ(e) (e′′) −→∗ γ(e) v′′

−→ ((γ\x)(e2)){v′′/x} = γ′(e2)

2

where γ′ = γ[x 7→ v′′]. Recall the lemma

` e : τ ∧ e −→ e′ ∧Rτ (e′) ⇐⇒ Rτ (e)

Thus, if Rτ2(γ
′(e2)), then Rτ2(γ(e) e′′). Therefore, we now only need to show Rτ2(γ

′(e2)).

We now prove this by the typing derivations of one of our assumptions. Recall the assumption,
Γ ` λx :τ1. e : τ1 → τ2. Its typing derivation has the form

Γ, x : τ1 ` e2 : τ2

Γ ` λx :τ1. e2 : τ1 → τ2

It is now important to notice that γ′ |= Γ, x : τ1. This is because γ |= Γ and γ′(x) = v′′ ∈ RΓ(x), where
Γ(x) = τ1. Hence, by our induction hypothesis, γ′(e2) ∈ Rτ2 , and this completes our proof.

Logical relations is a powerful technique that can be used to prove properties of more complex languages.

3

