1 Strong normalization and logical relations

We want to prove all terms terminate. In other words we want to show that every expression has a normal form. It agrees with the denotational semantics at base types and this implies strong normalization. But both these facts will require a new proof technique, logical relations.

We prove by induction on typing derivation. We want the following as our induction hypothesis

$$\vdash e:\tau \implies \exists v.e \longrightarrow^* v \tag{1}$$

We can show that this easily holds for the base types.

$$\vdash e : B \land e \longrightarrow^* v \iff \mathcal{C} \llbracket \vdash e : B \rrbracket \emptyset = v$$

Consider at this typing inference rule

$$\frac{\vdash e_0: \tau_1 \to \tau_2 \vdash e: \tau_1}{\vdash e_0 \ e_1 \tau_2}$$

Just because e_0 terminates, it does not imply that e_0 , it does not imply that e_0 when e_1 is substituted will terminate. Hence our induction hypothesis is not strong enough.

<u>Idea:</u> Define a family of relations \mathcal{R}_{τ} indexed on type. The *logical relation* is defined by induction on type structure. $\mathcal{R}_{\tau}(e)$ is a unary relation with $e \in \mathcal{R}_{\tau}$. So our induction hypothesis would be now.

$$\mathcal{R}_{\tau}(e) \implies \vdash e.\tau \land \exists v.e \longrightarrow^* v$$

Notice that we define the logical relation in such a way that it implies the fact that we are trying to prove. We formally define the logical relation as:

$$\mathcal{R}_B(e) \equiv \vdash e : B \land \exists v.e \longrightarrow^* v
\mathcal{R}_{\tau_1 \to \tau_2}(e) \equiv e : \tau_1 \to \tau_2 \land \exists v.e \to^* v \land \forall e'.\mathcal{R}_{\tau_1}(e') \Longrightarrow \mathcal{R}_{\tau_2}(e \ e')$$

Lemma 1 $\mathcal{R}_{\tau}(e) \implies \vdash e.\tau \land \exists v.e \longrightarrow^* v$

Proof: We need an additional lemma for this.

Lemma 2
$$\vdash e : \tau \land e \rightarrow e' \land \mathcal{R}_{\tau}(e') \iff \mathcal{R}_{\tau}(e)$$

Proof: We prove by induction on τ .

- $\tau = B$. $\mathcal{R}_{\tau}(e') \implies e' \longrightarrow^* v$. Hence $e \longrightarrow e' \longrightarrow^* v$
- $\tau = \tau_1 \to \tau_2$. Assume an arbitrary e'' where $\mathcal{R}_{\tau_1}(e'')$.

$$e \ e'' \to e' \ e'' \implies e' \ e'' \longrightarrow^* v$$

 $\implies \forall e''.\mathcal{R}_{\tau_1}(e'')$
 $\implies \mathcal{R}_{\tau_2}(e' \ e'')$

Now we proceed on to the strong normalization hypothesis that every typed-lambda term has normal form. This we prove by induction on typing derivations.

$$\Gamma \vdash \lambda x : \tau_1 \cdot e' : \tau_1 \to \tau_2$$

Consider $\Gamma \vdash e : \tau \implies \mathcal{R}_{\tau}(e)$, if free terms are in e then it will not reduce to a value. For this we introduce a substitution operator γ .

$$\gamma = \{x_1 \mapsto v_1, x_2 \mapsto v_2, \dots, x_n \mapsto v_n\}$$

We lift this definition to expression in the following manner: $\gamma(e)$ means e with x_1, x_2, \ldots, x_n substituted by γ , i.e. $\gamma(e) = e\{v_1/x_1, \ldots, v_n/x_n\}$.

We say a substitution satisfies Γ as:

$$\gamma \models \Gamma \iff dom(\gamma) = dom(\Gamma)$$
$$\land \ \forall x \in dom(\gamma).\gamma(x) \in \mathbf{Value} \land \mathcal{R}_{\Gamma(x)}(\gamma(x))$$

We can say $\gamma(x) \in \mathbf{Value}$ because we are having call by value semantics. If it were Call by Name semantics we have to show for Subst $\gamma(e) = \{x_1 \mapsto e_1, x_2 \mapsto e_2, \dots, x_n \mapsto e_n\}$.

Let us recall the substitution lemma

$$\Gamma \vdash e : \tau \land \gamma \models \Gamma \implies \gamma(e) : \tau$$

Our induction hypothesis now turns out to be

$$\Gamma \vdash e : \tau \land \gamma \models \Gamma \implies \mathcal{R}_{\tau}(\gamma(e))$$

Strong normalization: We specialize to $\Gamma = \emptyset$, $\gamma = \emptyset$. So if we prove our induction hypothesis we are done by setting $\Gamma = \emptyset$ and $\gamma = \emptyset$.

We now show that $\Gamma \vdash e : \tau \land \gamma \models \Gamma \implies R_{\tau}(\gamma(e))$ using the substitution lemma. Recall the syntax of λ^{\rightarrow} .

$$e ::= b \mid x \mid e_0e_1 \mid \lambda x : \tau. e$$

So we have the following cases:

- Case e = b: Since b is a base value, $\vdash e : B \land b \longrightarrow^* v$. Thus, by the definition of logical relations, $R_B(\gamma(b))$.
- Case e = x: We need to show that $\Gamma \vdash x : \tau \land \gamma \models \Gamma \implies R_{\tau}(\gamma(x))$. Since x is a variable and $\Gamma \vdash x : \tau$, so $\tau = \Gamma(x)$ and $\vdash e : \Gamma(x)$. Moreover, since the evaluation rules for λ^{\rightarrow} is CBV, $\gamma(x)$ is a value. Therefore, $R_{\tau}(\gamma(x))$.
- Case $e = e_0$ e_1 : We need to show that $\Gamma \vdash e_0$ $e_1 : \tau \land \gamma \models \Gamma \implies R_{\tau}(\gamma(e_0 \ e_1))$. By typing derivation, we have:

$$\frac{\Gamma \vdash e_0 : \tau_1 \to \tau \quad \Gamma \vdash e_1 : \tau_1}{\Gamma \vdash e_0 \ e_1 : \tau}$$

Thus, by the induction hypothesis on the two typing judgments, $R_{\tau_1 \longrightarrow \tau}(\gamma(e_0))$ and $R_{\tau_1}(\gamma(e_1))$. It then follows from the definition of $R_{\tau_1 \to \tau}$ that $R_{\tau}(\gamma(e_0) \gamma(e_1))$. And finally, $R_{\tau}(\gamma(e_0) \gamma(e_1)) = R_{\tau}(\gamma(e_0 e_1))$.

• Case $e = \lambda x : \tau_1. e_2$: Assume $\Gamma \vdash \lambda x : \tau_1. e_2 : \tau_1 \to \tau_2 \land \gamma \models \Gamma$. In order to show that $R_{\tau_1 \to \tau_2}(e)$, we need to show that

$$(\vdash \gamma(e) : \tau_1 \to \tau_2) \land (\exists v. \gamma(e) \longrightarrow^* v) \land (\forall e''. R_{\tau_1}(e'') \implies R_{\tau_2}(\gamma(e) e''))$$

For the first clause, it can be shown by using the substitution lemma on our assumptions, i.e.

$$\Gamma \vdash \lambda x : \tau_1. e_2 : \tau_1 \to \tau_2 \land \gamma \models \Gamma \implies \vdash \gamma(\lambda x : \tau_1. e_2) : \tau_1 \to \tau_2$$

The second clause follows from the definition of γ , $\gamma(\lambda x : \tau_1. e_2) = \lambda x : \tau_1. \gamma(e_2)$, which is a value. We now need to prove the third clause.

Consider an arbitrary e'' and assume $R_{\tau_1}(e'')$. It needs to be shown that $R_{\tau_2}(\gamma(e) e'')$. We first note that $\gamma(e) = \lambda x : \tau_1.(\gamma \setminus x) e_2$, where $\gamma \setminus x$ is simply γ on all values except x. And since the evaluation rules of λ^{\rightarrow} is CBV, we have the following

$$\gamma(e) \ (e'') \longrightarrow^* \gamma(e) \ v''$$

$$\longrightarrow \ ((\gamma \backslash x)(e_2))\{v''/x\} = \gamma'(e_2)$$

where $\gamma' = \gamma[x \mapsto v'']$. Recall the lemma

$$\vdash e : \tau \land e \longrightarrow e' \land R_{\tau}(e') \iff R_{\tau}(e)$$

Thus, if $R_{\tau_2}(\gamma'(e_2))$, then $R_{\tau_2}(\gamma(e) e'')$. Therefore, we now only need to show $R_{\tau_2}(\gamma'(e_2))$.

We now prove this by the typing derivations of one of our assumptions. Recall the assumption, $\Gamma \vdash \lambda x : \tau_1 . e : \tau_1 \to \tau_2$. Its typing derivation has the form

$$\frac{\Gamma, x : \tau_1 \vdash e_2 : \tau_2}{\Gamma \vdash \lambda x : \tau_1 \cdot e_2 : \tau_1 \to \tau_2}$$

It is now important to notice that $\gamma' \models \Gamma, x : \tau_1$. This is because $\gamma \models \Gamma$ and $\gamma'(x) = v'' \in R_{\Gamma(x)}$, where $\Gamma(x) = \tau_1$. Hence, by our induction hypothesis, $\gamma'(e_2) \in R_{\tau_2}$, and this completes our proof.

Logical relations is a powerful technique that can be used to prove properties of more complex languages.