
CS611 Lecture 22 Typed Lambda Calculus 22 October 2004
Scribe: Leonid Meyerguz, Andrew Myers Lecturer: Andrew Myers

Type checking is a lightweight technique for proving simple properties of programs. Unlike theorem-
proving techniques based on axiomatic semantics, type checking usually cannot determine if a program will
produce the correct output; instead, it is a way to test whether a program is well-formed, with the idea that
a well-formed program satisfies certain simple properties. The traditional application of type checking is
to show that a program cannot get stuck; that is, that a type-correct program will never reach a non-final
configuration in its operational semantics from which its behavior is undefined. This is a very weak notion
of program correctness, but it turns out to be very useful in practice for catching bugs.

We have already seen some typed languages in class this semester. For example, ML and the meta-
language used in class are both typed. We now introduce a typed variant of lambda calculus, show how
to construct operational and denotational semantics for this language, and discover some of its interesting
properties.

1 Syntax

A typed lambda calculus (λ→) program is an expression containing no free variables. The syntax is virtually
identical to that of untyped lambda calculus, with the exception of λ-terms. Since lambda abstraction defines
a function expecting an argument, λ-terms in λ→ programs should expect arguments of a certain type. In
addition, λ→ will allow a kind of expressions, corresponding to base values, such as integers, booleans, and
unit values. Finally, λ→ will define set of base types, corresponding to the base values. So, the complete
syntax is given below:

e ::= x | e1 e2 | λx :τ. e | b

b ::= 0 | 1 | 2 | . . . | true | false | unit

τ ∈ Type ::= B | τ1 → τ2

B := int | bool | 1
v ∈ Value ::= b | λx :τ. e

The key difference between a the typed and untyped Lambda calculus is that every λ→ expression has
an associated type. For example, the expression 1 has the type int, which we can write as 1: int. The
type 1 has nothing to do with integers; it is the type of the single unit value unit. Likewise, the function
TRUEint = λx : int.λy : int.x has the type int → (int → int). Since the → operator is right-associative, we
can write

TRUEint = (λx : int.λy : int.x) : int → int → int

2 Small-Step Operational Semantics and Type Correctness

The small-step operational semantics in λ→ are no different from those in untyped λ-calculus. The presence
of types does not alter the evaluation rules for expressions, but merely limits on the kinds of expressions
that may be evaluated. Below we give the evaluation context and small step operational semantics for λ→.

C ::= C e | v C | [·]

C[(λx :τ. e)v] −→ C[e{v/x}]

Now, we are ready to revisit the concept of type correctness that we touched upon in the beginning of
the lecture. If a program is well-formed (well-typed) then it cannot become stuck at any point during its
execution. Thus, if a type-correct program e evaluates to some expression e′ such that e′ is not a base value
or a λ-term, then e′ must itself evaluate to some other expression e′′. Formally,

1

` e : τ ∧ e →∗ e′ ⇒ (e′ ∈ Value ∨ ∃e′′.e′ → e′′)

We use the notation ` e : τ to mean that e is well-typed with the type τ . This assertion is also called a
typing for e.

By now, it is natural to inquire about what a type-incorrect λ→ program would look like, and how it
may get stuck. In answer to this question, recall our function definition for TRUEint above, and consider
the following additional definition:

IFint = λt : int → int → int. λa : int. λb : int. t a b

Clearly, IFint(TRUEint 2 3) will evaluate to 2. However, consider the expression IFint(true 2 3) → ((true 2) 3).
The expression (true 2) is meaningless, since true is not a function term. Therefore, the program gets stuck
at this point.

3 Static Semantics and Type Checking

In order to analyze programs written in typed languages, we introduce a new kind of semantics called of
static semantics. The name is a bit misleading – it’s not really a semantics for the language, but rather a set
of rules that define which programs are legal, usually expressed as a set of inference rules that defines the
relationship between expressions and types of a language. In a moment, we will give the static semantics of
typed lambda calculus, but prior to this, we must introduce the notion of typing context.

A typing context Γ is an environment that maps variables to types. We can view it as a partial function
that takes a variable and returns the variable’s type: Γ ∈ Var ⇀ Type. The notation dom(Γ) is used to
refer to the finite subset of the domain Var on which Γ is defined. The typing context ∅ is the empty typing
context where dom(∅) is empty.

We are now ready to give the static semantics for typed Lambda calculus. We write Γ ` e : τ to signify
that the expression e is correct with respect to type τ within the typing context Γ. The assertion ` e : τ we
define as ∅ ` e : τ . Below, we give the inference rules for well-typed λ→ programs:

Γ ` n : int Γ ` true : bool Γ ` unit : 1

Γ[x 7→ τ] ` x : τ

Γ ` e0 : τ → τ ′ Γ ` e1 : τ

Γ ` e0 e1 : τ ′
Γ[x 7→ τ] ` e : τ ′

Γ ` (λx : τ. e) : τ → τ ′

Let us explain these inference rules in more detail. If e is an expression consisting of a single variable x,
then Γ ` e : τ requires that x have type τ in the typing context; that is, we must be able to find a context
Γ such that the current typing context can be described as Γ[x 7→ τ]. (Often, as in Pierce’s book, this is
written as Γ, x :τ .) If e is an application of e0 to e1 that has the type τ ′ , then e0 must be a function from τ
to τ ′, and e1 must have the type τ . Finally, if the lambda-abstraction λ(x : τ.e) is a function of type τ → τ ′,
then e must have the type τ ′ within the typing context (Γ[x 7→ τ], which we modify in order to account for
the possibility that the variable x of type τ may legally appear among the free variables of e.

To type-check a λ→ program, we can attempt to construct its proof tree. For example, consider the
program (λx : int. x) 2, which evaluates to 2:int. We can construct a proof tree for this program as follows:

x : int ∈ (Γ, x : int)
(Γ, x : int) ` x : int

Γ ` (λx : int. x) : int → int Γ ` 2 : int

Γ ` (λx : int. x) 2 : int

The above is a valid proof tree for our program. An automated type checker effectively constructs proof
trees like this one in order to test whether a program is type-correct.

2

4 Expressive Power of Typed Lambda Calculus

By now you may be wondering if we have lost any expressive power of Lambda calculus by introducing types.
The answer to this question is a resounding yes. First of all, we have lost generic function composition. We
can no longer compose any two arbitrary functions, since they may have mismatching types. The IFint

function above is a good example of this.
Second, and perhaps more importantly, we have lost the ability to write loops. To convince ourselves of

that, recall the term Ω that we defined as

Ω = (λx (x x)) (λx (x x))

Let us attempt to construct a derivation of a typing for the λ→ expression (λx :τ. x x):

Γ[x 7→ τ] ` x : τ → τ ′ Γ[x 7→ τ] ` x : τ

Γ[x 7→ τ] ` (x x) : τ ′

Γ ` (λx :τ. x x) : τ → τ ′

From the above, we see that x : τ → τ ′ and x : τ . Therefore, we conclude that τ = τ → τ ′. It is not
possible to write down any finite type expression that satisfies this equation and therefore, we conclude that
the expression (λx : τ.(x x)) cannot be typed. In fact, a little later in the lecture, we will see that we cannot
write down any nonterminating program in λ→, at least according to a denotational model of what programs
mean. This will turn out be true from an operational perspective as well. Fortunately, as we will see in later
lectures, we can extend our type system to allow nonterminating programs.

3

