1 Introduction

In this lecture we discuss the denotational semantics of REC+ (a language introduced in the previous lecture) and uML

2 Denotational Semantics of REC+

Although REC+ was introduced in the last lecture, we will first review the structure of a program in the language:

$$
\begin{aligned}
\operatorname{program} & ::=d \text { in } e \\
d & ::=f_{1}\left(x_{1}, \ldots x_{a_{1}}\right)=e_{1} \ldots f_{n}\left(x_{1}, \ldots x_{a_{n}}\right)=e_{n} \\
e & ::=n|x| e_{1}+e_{2} \mid \text { ifp } e_{0} \text { then } e_{1} \text { else } e_{2} \mid \text { let } x=e_{1} \text { in } e_{2} \mid f_{i}\left(e_{1}, \ldots e_{a_{i}}\right)
\end{aligned}
$$

As in all denotational semantics, we begin by assigning reasonable domains to language features. Since all functions in REC+ exist at the top level of the program, we will need a domain FEnv to represent all of the functions in a given program. It is quite natural to think of an element of this domain as being a tuple of a_{n} functions, each taking a_{i} Args to a Result, where Arg and Result are domains that we have not yet defined but whose purpose should be obvious. Thus, we have

$$
\phi \in F E n v=\left(\operatorname{Arg}^{a_{1}} \rightarrow \text { Result }\right) \times \ldots \times\left(\operatorname{Arg}^{a_{n}} \rightarrow \text { Result }\right)
$$

We will also need a domain Env which will contain all naming environments ρ. Again, an element of this domain should be a function that maps a Var to an Arg. It follows that

$$
\rho \in E n v=\operatorname{Var} \rightarrow \operatorname{Arg}
$$

As for the definition of the domain Arg, it depends on whether we choose to have REC + be a CBV or CBN language. If it is CBV, then every argument to a function must terminate to a value, so $\operatorname{Arg}=\mathbb{Z}$. If it is CBN, however, argument expressions don't necessarily need to terminate, and so $\operatorname{Arg}=\mathbb{Z}_{\perp}$. In all cases, the domain Result $=\mathbb{Z}_{\perp}$.

Finally, we need two functions to produce the actual denotational semantics for a program:

$$
\begin{aligned}
& \mathcal{D} \llbracket d \rrbracket: \text { FEnv } \\
& \mathcal{E}[.]: \operatorname{Exp}_{R E C+} \rightarrow \text { FEnv } \rightarrow \text { Env } \rightarrow \text { Result }
\end{aligned}
$$

Thus, the denotational semantics of a program $p=d$ in e is equal to:

$$
\mathcal{E} \llbracket e \rrbracket \mathcal{D} \llbracket d \rrbracket(\lambda x \in \text { Var. } 0)
$$

2.1 Changing the properties of REC+

Depending on how \mathcal{D} is defined, the properties of the language REC+ change:

Eagerness

A Call by value
B Call by name

Function scope

1 Only in later functions
2 In self and later
3 Everywhere
This leads to six total combinations of properties. Before we begin, recall that $\mathcal{D} \llbracket d \rrbracket=\left\langle F_{1}, \ldots F_{n}\right\rangle$.

$A 1$ and $B 1$

Define each F_{i} such that

$$
F_{i}=\lambda y \in \mathbb{Z}, \ldots y_{a_{i}} \in \mathbb{Z} . \mathcal{E} \llbracket e_{i} \rrbracket\left\langle F_{1}, \ldots F_{i-1}\right\rangle \rho_{0}\left[x_{1} \mapsto y_{1}, \ldots x_{a_{i}} \mapsto y_{a_{i}}\right]
$$

Since nontermination is impossible (there is no recursion), the domain of Result can be changed to Result $=\mathbb{Z}$. As a result, this language would not be Turing complete. This definition holds for both the CBN and CBV variations A1 and B1

A 2 and B 2
We would like F_{i} to be defined such that:

$$
F_{i}=\lambda y_{1} \in \mathbb{Z}, \ldots, y_{a_{i}} \in \mathbb{Z} \cdot \mathcal{E} \llbracket e_{i} \rrbracket\left\langle F_{1}, \ldots F_{i-1}, f\right\rangle \rho_{0}\left[x_{j} \mapsto y_{j}\right]
$$

where $f=F_{i}$. This implies that we need to take a fixed point of F_{i} :

$$
F_{i}=\text { fix } \lambda f \in A r g^{a_{i}} \rightarrow \text { Result. } \lambda y_{1} \in \mathbb{Z}, \ldots y_{a_{i}} \in \mathbb{Z} . \mathcal{E} \llbracket e_{i} \rrbracket\left\langle F_{1}, \ldots F_{i-1}, f\right\rangle \rho_{0}\left[x_{j} \mapsto y_{j}\right]
$$

However, Arg $^{a_{i}} \rightarrow$ Result must be pointed for this to be valid. Additionally, since nontermination is now possible, Result $=\mathbb{Z}_{\perp}$. This translation is identical for CBN, except that $\operatorname{Arg}=\mathbb{Z}_{\perp}$.
$A 3$ and B3

$$
\begin{aligned}
\mathcal{D} \llbracket d \rrbracket & =\left\langle F_{1}, \ldots F_{n}\right\rangle \\
& =\text { fix } \lambda \phi \in F E n v .\left\langle\lambda y_{1} \ldots y_{a_{i}} \in \mathbb{Z} \cdot \mathcal{E} \llbracket e_{1} \rrbracket \phi \rho_{0}\left[x_{j} \mapsto y_{j}\right], \ldots \lambda y_{1} \ldots y_{a_{n}} \in \mathbb{Z} \cdot \mathcal{E} \llbracket e_{n} \rrbracket \phi \rho_{0}\left[x_{j} \mapsto y_{j}\right]\right\rangle
\end{aligned}
$$

Since the codomain of each function F_{i} is \mathbb{Z}_{\perp}, it follows that each F_{i} is pointed, and thus so is their cross product, and thus FEnv is a CPO. This translation is identical for CBN, except $\operatorname{Arg}=\mathbb{Z}_{\perp}$ instead of \mathbb{Z}

3 Denotational Semantics of UML

Recall the definition of UML:

$$
\begin{aligned}
e::= & n|x| e_{1}+e_{2}|\lambda x . e| e_{0} e_{1} \mid \text { true } \mid \text { false } \mid \text { let } x=e_{1} \text { in } e_{2}|\# n e| \\
& \left(e_{1}, \ldots, e_{n}\right) \mid \text { letrec } f_{1}=\lambda x_{1} . e_{1} \ldots f_{n}=\lambda x_{n} . e_{n} \text { in } e \mid \text { if } e_{0} \text { then } e_{1} \text { else } e_{2}
\end{aligned}
$$

As above, we need to come up with definitions for the domains of this language. An initial guess results in the following:

$$
\begin{aligned}
& \text { Value }=\mathbb{T}+\mathbb{Z}+\text { Tuple }+ \text { Function }+ \text { Error } \\
& \text { Error }=\mathbb{U} \\
& \text { Result }=\text { Value }_{\perp} \\
& \text { Function }=\text { Value } \rightarrow \text { Result } \\
& \text { Tuple }=\text { Value }+(\text { Value } \times \text { Tuple }) \\
& \text { EnvVar } \rightarrow \text { Value }
\end{aligned}
$$

However, both Function and Tuple define their domains in terms of themselves. The above are actually domain equations which need to be solved for each one of the domains. Is that possible?

The answer is "yes", but we need to take a fixed point on domains to solve the equations. We've already seen this problem before when we talked about constructing a denotational model for the untyped lambda calculus. There we noted that we couldn't construct an isomorphism between D and $D \rightarrow D$ (except for the trivial solution $D=\mathbb{U})$. Now we know we only need to find a solution that makes D isomorphic to the continuous functions from D to D, which addresses the cardinality problems we saw earlier. So we can express the equation $D \cong[D \rightarrow D]$ as $D \cong \mathcal{F}(D)$ where \mathcal{F} is a function on domains defined as $\mathcal{F}(E)=[E \rightarrow E]$. Then the solution we are looking for is a fixed point of \mathcal{F} !

We will state (without proof) that the domain equations can be solved as long as the right hand side consists of constructions of $D+E, D \times E, D \rightarrow E, D_{\perp}$. For more information, read Winskel, Chapter 12 for a discussion of information systems, which give a way to find fixed points on domains defined using these constructions.

Now that we have the domain equations we can write a direct semantics:

$$
\begin{aligned}
\llbracket e \rrbracket & : \text { Env } \rightarrow \text { Result } \\
\llbracket n \rrbracket \rho & =\left\lfloor\operatorname{in}_{2}(n)\right\rfloor \\
\llbracket x \rrbracket \rho & =\lfloor\rho(x)\rfloor \\
\llbracket e_{1}+e_{3} \rrbracket & =\text { let } v_{1}=\llbracket e_{1} \rrbracket \rho \text { in let } v_{2}=\llbracket e_{2} \rrbracket \rho \text { in case } v_{1} \text { of }
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{in}_{1}(b) \cdot \operatorname{error}\left(=\left\lfloor\operatorname{in}_{5}(\text { unit })\right\rfloor\right) \\
& \mid \operatorname{in}_{2}\left(n_{1}\right) \text {.case } v_{2} \text { of }
\end{aligned}
$$

$$
\begin{aligned}
& \text { in }_{1}(b) \text {.error } \\
& \mid \text { in } 2\left(n_{2}\right) \cdot\left\lfloor\text { in }_{2}\left(n_{1}+n_{2}\right)\right\rfloor \\
& \mid \text { in }_{3}(t) \text {.error } \\
& \mid \text { in } n_{4}(f) . \text { error } \\
& \mid \text { in }{ }_{5}(\text { unit }) \text {.error }
\end{aligned}
$$

$$
\mid \mathrm{in}_{3}(t) . \text { error }
$$

$$
\text { in } \operatorname{in}_{4}(f) \cdot \text { error }
$$

$$
\text { | } \mathrm{in}_{5}(\text { unit).error }
$$

Note that this works without excess lifting because let is strict so it takes care of the delifting for us. This format is very wordy because we have to explicitly handle every case. So we will introduce a scase that allows us to do mre powerful ML-style pattern matching for the sake of brevity. This makes the remaining semantics:

$$
\begin{aligned}
& \llbracket e_{1}+e_{2} \rrbracket \rho=\text { scase } \llbracket e_{1} \rrbracket \rho \text { of } \mathbb{Z}\left(n_{1}\right) \text { (scase } \llbracket e_{2} \rrbracket \rho \text { of } \mathbb{Z}\left(n_{2}\right) .\left\lfloor\text { in } n_{2}\left(n_{1}+n_{2}\right)\right\rfloor \text { else error) else error } \\
& \llbracket t r u e \rrbracket \rho=\left\lfloor\text { in }_{1}\left(\text { in }_{1}(\text { true })\right)\right\rfloor \\
& \llbracket \text { false } \rrbracket \rho=\left\lfloor\mathrm{in}_{1}\left(\mathrm{in}_{1}(\text { false })\right)\right\rfloor \\
& \llbracket \lambda x . e \rrbracket \rho=\left\lfloor i_{4}(\lambda y \in \text { Value. } \llbracket e \rrbracket \rho[x \mapsto y])\right\rfloor \\
& \llbracket e_{0} e_{1} \rrbracket \rho=\text { scase } \llbracket e_{0} \rrbracket \rho \text { of Function(f).(scase } \llbracket e_{1} \rrbracket \rho \text { of Error.error | else (v).f(v)) else error } \\
& \llbracket \text { if } e_{0} \text { then } e_{1} \text { else } e_{2} \rrbracket \rho=\text { scase } \llbracket e_{0} \rrbracket \rho \text { of } \mathbb{T} \text { (true). } \llbracket e_{1} \rrbracket \rho \mid \mathbb{T} \text { (false). } \llbracket e_{2} \rrbracket \rho \mid \text { else error } \\
& \llbracket \text { let } x=e_{1} \text { in } e_{2} \rrbracket \rho=\text { let } v=\llbracket e_{1} \rrbracket \rho \text { in scase } v \text { of Error.error } \mid \text { else } \llbracket e_{2} \rrbracket \rho[x \mapsto v] \\
& \llbracket \# 1 e \rrbracket \rho=\text { scase } \llbracket e \rrbracket \rho \text { of Tuple }(t) \text {.case (unfold Tuple } t \text {) of } \operatorname{in}_{1}(v) \cdot\lfloor v\rfloor \mid \mathrm{in}_{2}(\langle v, t\rangle) \cdot\lfloor v\rfloor \\
& \llbracket \# n e \rrbracket \rho=\text { scase } \llbracket e \rrbracket \rho \text { of Tuple }(t) \text {. (fix } \lambda f \in \text { Tuple } \rightarrow \mathbb{Z} \rightarrow \text { Result. } \lambda t^{\prime} \in \text { Tuple. } \lambda n \in \mathbb{Z} \text {. scase } \llbracket e \rrbracket \rho \text { of }
\end{aligned}
$$

$$
\begin{aligned}
& \text { | in } \left.n_{2}\left(\left\langle v, t^{\prime \prime}\right\rangle\right) \text {.if } n=1 \text { then }\lfloor v\rfloor \text { else } f t^{\prime \prime}(n-1)\right) t \\
& \llbracket\left(e_{1}, \ldots, e_{n}\right) \rrbracket \rho=\text { let } v_{1}=\llbracket e_{1} \rrbracket \rho \text { in } \ldots \text { let } v_{n}=\llbracket e_{n} \rrbracket \rho \text { in }\left\lfloor\operatorname { i n } _ { 3 } \left(\text { fold }\left(\text { in }_{2}\left\langle v_{1}, \text { fold }\left(\mathrm{in}_{2}\left\langle v_{2}, \ldots \text { fold }\left(\text { in }_{1}\left(v_{n}\right)\right)\right)\right)\right)\right\rfloor\right.\right. \\
& \text { 【letrec } f_{i}=\lambda x_{i} . e_{i} \text { in } e \rrbracket \rho=\left(\lambda F \in \text { Function }{ }^{n} . \llbracket e \rrbracket \rho\left[f_{1} \mapsto \pi_{1} F, \ldots, f_{n} \mapsto \pi_{n} F\right]\right) \\
& \text { (fix }_{\text {Function }^{n}}\left(\lambda F \in \text { Function }^{n}\right. \text {. } \\
& \left\langle\lambda y \in \text { Value. } \llbracket e_{1} \rrbracket \rho\left[x_{1} \mapsto y, f_{1} \mapsto \pi_{1} F, \ldots, f_{n} \mapsto \pi_{n} F\right], \ldots,\right. \\
& \left.\left.\left.\lambda y \in \text { Value. } \llbracket e_{n} \rrbracket \rho\left[x_{n} \mapsto y, f_{1} \mapsto \pi_{1} F, \ldots, f_{n} \mapsto \pi_{n} F\right]\right\rangle\right)\right)
\end{aligned}
$$

Note that the construction for letrec works because Function \times Function $\times \ldots \times$ Function is pointed.

