
CS611 Lecture 14 Denotational Semantics of REC+, UML 15 October, 2004
Scribe: Jonathan Kaldor, Ian Kash Lecturer: Andrew Myers

1 Introduction

In this lecture we discuss the denotational semantics of REC+ (a language introduced in the previous lecture)
and uML

2 Denotational Semantics of REC+

Although REC+ was introduced in the last lecture, we will first review the structure of a program in the
language:

program ::= d in e

d ::= f1(x1, ...xa1) = e1 ... fn(x1, ...xan) = en

e ::= n | x | e1 + e2 | ifp e0 then e1 else e2 | let x = e1 in e2| fi(e1, ...eai)

As in all denotational semantics, we begin by assigning reasonable domains to language features. Since
all functions in REC+ exist at the top level of the program, we will need a domain FEnv to represent all of
the functions in a given program. It is quite natural to think of an element of this domain as being a tuple
of an functions, each taking ai Args to a Result, where Arg and Result are domains that we have not yet
defined but whose purpose should be obvious. Thus, we have

φ ∈ FEnv = (Arga1 → Result)× ...× (Argan → Result)

We will also need a domain Env which will contain all naming environments ρ. Again, an element of this
domain should be a function that maps a Var to an Arg. It follows that

ρ ∈ Env = Var → Arg

As for the definition of the domain Arg, it depends on whether we choose to have REC+ be a CBV or
CBN language. If it is CBV, then every argument to a function must terminate to a value, so Arg = Z. If it
is CBN, however, argument expressions don’t necessarily need to terminate, and so Arg = Z⊥. In all cases,
the domain Result = Z⊥.

Finally, we need two functions to produce the actual denotational semantics for a program:

D[[d]] : FEnv

E [.] : ExpREC+ → FEnv → Env → Result

Thus, the denotational semantics of a program p = d in e is equal to:

E [[e]]D[[d]] (λx ∈ Var. 0)

2.1 Changing the properties of REC+

Depending on how D is defined, the properties of the language REC+ change:

Eagerness

A Call by value

B Call by name

1

Function scope

1 Only in later functions

2 In self and later

3 Everywhere

This leads to six total combinations of properties. Before we begin, recall that D[[d]] = 〈F1, ...Fn〉.

A1 and B1

Define each Fi such that

Fi = λy ∈ Z, ...yai ∈ Z. E [[ei]]〈F1, ...Fi−1〉ρ0[x1 7→ y1, ...xai 7→ yai]

Since nontermination is impossible (there is no recursion), the domain of Result can be changed to
Result = Z. As a result, this language would not be Turing complete. This definition holds for both the
CBN and CBV variations A1 and B1

A2 and B2

We would like Fi to be defined such that:

Fi = λy1 ∈ Z, ..., yai
∈ Z.E [[ei]]〈F1, ...Fi−1, f〉ρ0[xj 7→ yj]

where f = Fi. This implies that we need to take a fixed point of Fi:

Fi = fix λf ∈ Argai → Result. λy1 ∈ Z, ...yai
∈ Z. E [[ei]]〈F1, ...Fi−1, f〉ρ0[xj 7→ yj]

However, Argai → Result must be pointed for this to be valid. Additionally, since nontermination is now
possible, Result = Z⊥. This translation is identical for CBN, except that Arg = Z⊥.

A3 and B3

D[[d]] = 〈F1, ...Fn〉
= fix λφ ∈ FEnv. 〈λy1...yai

∈ Z.E [[e1]] φ ρ0[xj 7→ yj], ... λy1...yan
∈ Z.E [[en]] φ ρ0[xj 7→ yj]〉

Since the codomain of each function Fi is Z⊥, it follows that each Fi is pointed, and thus so is their cross
product, and thus FEnv is a CPO. This translation is identical for CBN, except Arg = Z⊥ instead of Z

3 Denotational Semantics of UML

Recall the definition of UML:

e ::= n | x | e1 + e2 | λx.e | e0 e1 | true | false | let x = e1 in e2 | #n e |
(e1, ..., en) | letrec f1 = λx1. e1 ... fn = λxn. en in e | if e0 then e1 else e2

As above, we need to come up with definitions for the domains of this language. An initial guess results in
the following:

2

Value = T + Z + Tuple + Function + Error

Error = U
Result = Value⊥

Function = Value → Result

Tuple = Value + (Value× Tuple)
EnvVar → Value

However, both Function and Tuple define their domains in terms of themselves. The above are actually
domain equations which need to be solved for each one of the domains. Is that possible?

The answer is “yes”, but we need to take a fixed point on domains to solve the equations. We’ve already
seen this problem before when we talked about constructing a denotational model for the untyped lambda
calculus. There we noted that we couldn’t construct an isomorphism between D and D → D (except for
the trivial solution D = U). Now we know we only need to find a solution that makes D isomorphic to the
continuous functions from D to D, which addresses the cardinality problems we saw earlier. So we can express
the equation D ∼= [D → D] as D ∼= F(D) where F is a function on domains defined as F(E) = [E → E].
Then the solution we are looking for is a fixed point of F !

We will state (without proof) that the domain equations can be solved as long as the right hand side
consists of constructions of D + E, D × E, D → E, D⊥. For more information, read Winskel, Chapter 12
for a discussion of information systems, which give a way to find fixed points on domains defined using these
constructions.

Now that we have the domain equations we can write a direct semantics:

[[e]] : Env → Result
[[n]]ρ = bin2(n)c
[[x]]ρ = bρ(x)c

[[e1 + e3]] = let v1 = [[e1]]ρ in let v2 = [[e2]]ρ in casev1 of
in1(b).error(= bin5(unit)c)
| in2(n1).case v2 of

in1(b).error
| in2(n2).bin2(n1 + n2)c
| in3(t).error
| in4(f).error
| in5(unit).error

| in3(t).error
| in4(f).error
| in5(unit).error

Note that this works without excess lifting because let is strict so it takes care of the delifting for us. This
format is very wordy because we have to explicitly handle every case. So we will introduce a scase that allows
us to do mre powerful ML-style pattern matching for the sake of brevity. This makes the remaining semantics:

3

[[e1 + e2]]ρ = scase [[e1]]ρ of Z(n1)(scase [[e2]]ρ of Z(n2).bin2(n1 + n2)c else error) else error

[[true]]ρ = bin1(in1(true))c
[[false]]ρ = bin1(in1(false))c
[[λx. e]]ρ = bin4(λy ∈ Value. [[e]]ρ[x 7→ y])c
[[e0e1]]ρ = scase [[e0]]ρ of Function(f).(scase [[e1]]ρ of Error.error | else (v).f(v)) else error

[[if e0 then e1 else e2]]ρ = scase [[e0]]ρ of T(true).[[e1]]ρ | T(false).[[e2]]ρ | else error

[[let x = e1 in e2]]ρ = let v = [[e1]]ρ in scase v of Error.error | else [[e2]]ρ[x 7→ v]
[[#1 e]]ρ = scase [[e]]ρ of Tuple(t).case (unfoldTuple t) of in1(v).bvc | in2(〈v, t〉).bvc

[[#n e]]ρ = scase [[e]]ρ of Tuple(t).(fix λf ∈ Tuple → Z → Result. λt′ ∈ Tuple. λn ∈ Z. scase [[e]]ρ of

Tuple(t).case (unfoldTuplet
′) of in1(v).if n = 1 then bvcelse error

| in2(〈v, t′′〉).if n = 1 then bvc else ft′′(n− 1))t
[[(e1, . . . , en)]]ρ = let v1 = [[e1]]ρ in . . . let vn = [[en]]ρ in bin3(fold(in2〈v1, fold(in2〈v2, . . . fold(in1(vn)))))c

[[letrec fi = λxi. ei in e]]ρ = (λF ∈ Functionn . [[e]]ρ[f1 7→ π1F, . . . , fn 7→ πnF])
(fixFunctionn (λF ∈ Functionn .

〈λy ∈ Value . [[e1]]ρ[x1 7→ y, f1 7→ π1F, . . . , fn 7→ πnF], . . . ,
λy ∈ Value . [[en]]ρ[xn 7→ y, f1 7→ π1F, . . . , fn 7→ πnF]〉))

Note that the construction for letrec works because Function× Function× . . .× Function is pointed.

4

