Scribe: Grant Goodale, Liviu Popescu

October 13, 2004 Lecturer: Andrew Myers

Continuous functions

For any two CPO's we denote by $[D \to E]$ the set of continuous functions that map D to E. Considering the pointwise ordering on two functions $f, g \in [D \to E], f \sqsubseteq g$ iff $\forall d \in D.f(d) \sqsubseteq g(d)$, then is $([D \to E], \sqsubseteq)$ a CPO?

This is equivalent with given a chain $f_1, f_2, ...$ with $f_i \in [D \to E]$ the LUB of the chain is also in $[D \to E]$. We know that we can get a LUB for D&E we only have to prove that the LUB of $D \to E$ is a continuous function which means that the LUB of a chain of functions is continuous.

The LUB of the chain is also a function so in order to be continuous it must fulfill the equation:

$$(\lambda d \in D. \bigsqcup_{n \in \omega} f_n(d))(\bigsqcup_{m \in \omega} d_m) = \bigsqcup_{m \in \omega} (\lambda d \in D. \bigsqcup_{n \in \omega} f_n(d))(d_m)$$

If we apply $\bigsqcup_{n\in\omega}f_n$ to a chain $d_m\in D$ the LUB of the chain obtained is:

$$\bigsqcup_{m \in \omega} (\lambda d \in D. \bigsqcup_{n \in \omega} f_{n \in D}(dn) = \bigsqcup_{n \in \omega} \bigsqcup_{n \in \omega} f_n(d_m)$$

If we apply $\bigsqcup_{n\in\omega} f_n$ to the $\bigsqcup_{m\in\omega} d_m$ then we get

$$\bigsqcup_{n \in \omega} f_n(\bigsqcup_{m \in \omega} d_m) = \bigsqcup_{n \in \omega} \bigsqcup_{m \in \omega} f_n(d_m)$$

We need to prove now that:

$$\bigsqcup_{n \in \omega} \bigsqcup_{m \in \omega} f_n(d_m) = \bigsqcup_{m \in \omega} \bigsqcup_{n \in \omega} f_n(d_m)$$

We will use the exchange lemma to prove that the order of the joins is commutative: If f is monotonic and continuous then:

$$\bigsqcup_{n} \bigsqcup_{m} f_{n}(d_{m}) = \bigsqcup_{n} f_{n}(d_{n}) = \bigsqcup_{m} \bigsqcup_{n} f_{n}(d_{m})$$

Proof:

Let $e_{nm} = f_n(d_m)$ then we then notice that

$$n < n', m < m' \Rightarrow e_{nm} \sqsubseteq e_{n'm'}$$

by choosing m' = n' = max(m, n) we get

$$e_{nm} \sqsubseteq e_{nn}$$

(Suppose WLOG that $m \leq n$) by taking the LUB over n we get

$$\bigsqcup_{n} e_{nm} \sqsubseteq \bigsqcup_{n} e_{nn}$$

by taking again the LUB over m then we get

$$\bigsqcup_{m} \bigsqcup_{n} e_{nm} \sqsubseteq \bigsqcup_{m} \bigsqcup_{n} e_{nn}$$

but e_{nn} is not dependent on m so

$$\bigsqcup_{m}\bigsqcup_{n}e_{nm}\sqsubseteq\bigsqcup_{n}e_{nn}$$

similarly by taking the LUB in the inverse order we get

$$\bigsqcup_{n}\bigsqcup_{m}e_{nm}\sqsubseteq\bigsqcup_{n}e_{nn}$$

Further more if we choose m' = n' = min(m, n) then

$$e_{nn} \sqsubseteq e_{mn}$$

(Suppose WLOG that $n \leq m$) by taking the LUB over n we get

$$\bigsqcup_{n} e_{nn} \sqsubseteq \bigsqcup_{n} e_{mn}$$

by taking again the LUB over m then we get

$$\bigsqcup_{m}\bigsqcup_{n}e_{nn}\sqsubseteq\bigsqcup_{m}\bigsqcup_{n}e_{mn}$$

but e_{nn} is not dependent on m so

$$\bigsqcup_{n} e_{nn} \sqsubseteq \bigsqcup_{m} \bigsqcup_{n} e_{mn}$$

similarly by taking the LUB in the inverse order we get

$$\bigsqcup_{n} e_{nn} \sqsubseteq \bigsqcup_{n} \bigsqcup_{m} e_{mn}$$

so we conclude that

$$\bigsqcup_{m} \bigsqcup_{n} e_{nm} = \bigsqcup_{n} e_{n}$$

and

$$\bigsqcup_{n} e_{n} = \bigsqcup_{n} \bigsqcup_{m} e_{nm}$$

which really mean

$$\bigsqcup_{m} \bigsqcup_{n} e_{nm} = \bigsqcup_{n} e_{n} = \bigsqcup_{n} \bigsqcup_{m} e_{nm}$$

and that is

$$\bigsqcup_{n} \bigsqcup_{m} f_{n}(d_{m}) = \bigsqcup_{n} f_{n}(d_{n}) = \bigsqcup_{m} \bigsqcup_{n} f_{n}(d_{m})$$

So the LUB of a chain of continuous functions is continuous which means that $[D \leftarrow E]$ is a CPO.

1 REC⁺ Language

Syntactic Forms

$$\begin{array}{lll} d & ::= & f_1(x_1,\dots,x_{a_1}) = e_1\dots f_n(x_1,\dots,x_{a_n}) = e_n \\ e & ::= & n & \mid X \mid e_1 \oplus e_2 \mid \text{ ifp } e_0 \text{ then } e_1 \text{ else } e_2 \mid \text{ let } x = e_1 \text{ in } e_2 \mid f_1(e_1,e_2,\dots,e_{a_1}) \end{array}$$

2

2 Evaluation Contexts

$$E := [\cdot] \mid [\cdot] \oplus e \mid n \oplus [\cdot] \mid [\cdot] \wedge e \mid \text{ifp } [\cdot] \text{ then } e_1 \text{ } else \text{ } e_2 \mid \text{ let } x = [\cdot] \text{ in } e$$

$$\mid f_1(v_1, v_2, \dots, [\cdot], e_k, \dots, e_{a_i})$$

3 Operational Semantics

Values may be defined as:

$$v ::= n$$

Our evaluation relation is the following:

$$e \xrightarrow{d} e'$$

The actual semantics are:

For a CBN evaluation style, we would include the following:

$$\frac{f_i(x_i, \dots, x_{a_i}) = e_i \in d}{f_i(n_1, \dots, n_{a_i}) \stackrel{d}{\longrightarrow} e_i\{n_1/x_1, \dots, n_{a_i}/x_{a_i}\}}$$

For a CBV evaluation style, we would include the following instead:

$$\frac{f_i(x_i, \dots, x_{a_i}) = e_i \in d}{f_i(e'_1, \dots, e'_{a_i}) \stackrel{d}{\longrightarrow} e_i\{e'_1/x_1, \dots, e'_{a_i}/x_{a_i}\}}$$

An example program in REC⁺: (this program finds the first prime after 1000)

$$\begin{split} f_1(n,m) &= n - m * n \wedge (n = m * (n/m) \vee f_1(n,m+1)) \\ f_2(n) &= f_1(n,2) \\ f_3(n) &= \text{ifp } f_2(n) \text{ then } n \text{ else } f_2(n+1) \text{ in } \\ f_3(1000) \end{split}$$

4 Denotational Semantics

What is our semantic function? $\mathcal{E}[\![e]\!]:\mathbb{Z}$? Possibly, but it depends on the function declarations. So we need an environment:

$$\phi \in FEnv = (\mathbb{Z}^{a_1} \longrightarrow Result) \times (\mathbb{Z}^{a_2} \longrightarrow Result) \times \dots \times (\mathbb{Z}^{a_n} \longrightarrow Result)$$

$$\langle F_1, \dots, F_n \rangle$$
 $\rho \in Env = \mathsf{Var} \longrightarrow Result$

Where $Result = \mathbb{Z}_{\perp}$. So, our semantic functions look like:

$$\mathcal{E}: \operatorname{Exp} \longrightarrow \operatorname{FEnv} \longrightarrow \operatorname{Env} \longrightarrow \operatorname{Result}$$

$$\begin{split} \mathcal{E}[\![n]\!]\phi\rho &= \lfloor n \rfloor \\ \mathcal{E}[\![x]\!]\phi\rho &= \lfloor \rho(x) \rfloor \\ \mathcal{E}[\![e_1 \oplus e_2]\!]\phi\rho &= \text{let } v_1 \in \mathbb{Z} = \mathcal{E}[\![e_1]\!]\phi\rho \text{ in } \\ &= \text{let } v_2 \in \mathbb{Z} = \mathcal{E}[\![e_2]\!]\phi\rho \text{ in } \\ &= \lfloor v_1 \oplus v_2 \rfloor \end{split}$$

Alternately, we could lift the \oplus operation:

$$\mathcal{E}\llbracket e_1 \oplus e_2 \rrbracket \phi \rho \quad = \quad \mathcal{E}\llbracket e_1 \rrbracket \phi \rho \ \oplus_{\perp} \ \mathcal{E}\llbracket e_2 \rrbracket \phi \rho$$

Continuing with our semantics:

$$\begin{split} \mathcal{E}[\![\text{let } x = e_1 \text{ in } e_2]\!]\phi\rho &= &\text{let } y \in \mathbb{Z} = \mathcal{E}[\![e_1]\!]\phi\rho \text{ in} \\ &\qquad \qquad \mathcal{E}[\![e_2]\!]\phi\rho \ [x \mapsto y] \\ \mathcal{E}[\![f_i(e_1, \dots, e_{a_i})]\!]\phi\rho &= &\text{let } v_1 \in \mathbb{Z} = \mathcal{E}[\![e_1]\!]\phi\rho \ , \\ &\vdots \\ &\qquad \qquad v_{a_i} \in \mathbb{Z} = \mathcal{E}[\![e_{a_i}]\!]\phi\rho \text{ in} \\ &\qquad \qquad (\pi_i\phi)\langle v_1, \dots, v_{a_i}\rangle \end{split}$$

What if we wanted to write a CBN environment instead of a CBV environment? Our domain equations would change:

$$\begin{array}{lll} Env & = & \mathsf{Var} \longrightarrow \mathbb{Z}_{\perp} \\ FEnv & = & (\mathbb{Z}_{\perp}^{a_1} \longrightarrow \mathbb{Z}_{\perp}) \ \times \ (\mathbb{Z}_{\perp}^{a_2} \longrightarrow \mathbb{Z}_{\perp}) \ \times \ \dots \ \times \ (\mathbb{Z}_{\perp}^{a_n} \longrightarrow \mathbb{Z}_{\perp}) \end{array}$$

As would our semantic functions:

$$\begin{split} \mathcal{E}[\![x]\!]\phi\rho &=& \rho(x) \\ \mathcal{E}[\![\text{let } x = e_1 \text{ in } e_2]\!]\phi\rho &=& \mathcal{E}[\![e_2]\!]\phi\rho \ [x \mapsto \mathcal{E}[\![e_1]\!]\phi\rho] \\ \mathcal{E}[\![f_i(e_1,\ldots,e_{a_i})]\!]\phi\rho &=& (\pi_i\phi)\langle \mathcal{E}[\![e_1]\!]\phi\rho,\ldots,\mathcal{E}[\![e_{a_i}]\!]\phi\rho\rangle \end{split}$$

There's only one issue left with our denotational semantics: where does ϕ come from? Our meaning function:

$$\mathcal{D}\llbracket d\rrbracket \in FEnv$$

$$\mathcal{E}\llbracket e\rrbracket \mathcal{D}\llbracket d\rrbracket (\lambda x.\phi) = \llbracket d \text{ in } e\rrbracket$$

We'll pick up with the definition of $\mathcal D$ in the next lecture.