Continuous functions

For any two CPO's we denote by $[D \rightarrow E]$ the set of continuous functions that map D to E. Considering the pointwise ordering on two functions $f, g \in[D \rightarrow E], f \sqsubseteq g$ iff $\forall d \in D \cdot f(d) \sqsubseteq g(d)$, then is $([D \rightarrow E]$, $\sqsubseteq)$ a CPO?

This is equivalent with given a chain f_{1}, f_{2}, \ldots with $f_{i} \in[D \rightarrow E]$ the LUB of the chain is also in $[D \rightarrow E]$.
We know that we can get a LUB for $D \& E$ we only have to prove that the LUB of $D \rightarrow E$ is a continuous function which means that the LUB of a chain of functions is continuous.

The LUB of the chain is also a function so in order to be continuous it must fulfill the equation:

$$
\left(\lambda d \in D \cdot \bigsqcup_{n \in \omega} f_{n}(d)\right)\left(\bigsqcup_{m \in \omega} d_{m}\right)=\bigsqcup_{m \in \omega}\left(\lambda d \in D \cdot \bigsqcup_{n \in \omega} f_{n}(d)\right)\left(d_{m}\right)
$$

If we apply $\bigsqcup_{n \in \omega} f_{n}$ to a chain $d_{m} \in D$ the LUB of the chain obtained is:

$$
\bigsqcup_{m \in \omega}\left(\lambda d \in D \cdot \bigsqcup_{n \in \omega} f_{n \in D}(d n)=\bigsqcup_{n \in \omega} \bigsqcup_{n \in \omega} f_{n}\left(d_{m}\right)\right.
$$

If we apply $\bigsqcup_{n \in \omega} f_{n}$ to the $\bigsqcup_{m \in \omega} d_{m}$ then we get

$$
\bigsqcup_{n \in \omega} f_{n}\left(\bigsqcup_{m \in \omega} d_{m}\right)=\bigsqcup_{n \in \omega} \bigsqcup_{m \in \omega} f_{n}\left(d_{m}\right)
$$

We need to prove now that:

$$
\bigsqcup_{n \in \omega} \bigsqcup_{m \in \omega} f_{n}\left(d_{m}\right)=\bigsqcup_{m \in \omega} \bigsqcup_{n \in \omega} f_{n}\left(d_{m}\right)
$$

We will use the exchange lemma to prove that the order of the joins is commutative:
If f is monotonic and continuous then:

$$
\bigsqcup_{n} \bigsqcup_{m} f_{n}\left(d_{m}\right)=\bigsqcup_{n} f_{n}\left(d_{n}\right)=\bigsqcup_{m} \bigsqcup_{n} f_{n}\left(d_{m}\right)
$$

Proof:
Let $e_{n m}=f_{n}\left(d_{m}\right)$ then we then notice that

$$
n \leq n^{\prime}, m \leq m^{\prime} \Rightarrow e_{n m} \sqsubseteq e_{n^{\prime} m^{\prime}}
$$

by choosing $m^{\prime}=n^{\prime}=\max (m, n)$ we get

$$
e_{n m} \sqsubseteq e_{n n}
$$

(Suppose WLOG that $m \leq n$) by taking the LUB over n we get

$$
\bigsqcup_{n} e_{n m} \sqsubseteq \bigsqcup_{n} e_{n n}
$$

by taking again the LUB over m then we get

$$
\bigsqcup_{m} \bigsqcup_{n} e_{n m} \sqsubseteq \bigsqcup_{m} \bigsqcup_{n} e_{n n}
$$

but $e_{n n}$ is not dependent on m so

$$
\bigsqcup_{m} \bigsqcup_{n} e_{n m} \sqsubseteq \bigsqcup_{n} e_{n n}
$$

similarly by taking the LUB in the inverse order we get

$$
\bigsqcup_{n} \bigsqcup_{m} e_{n m} \sqsubseteq \bigsqcup_{n} e_{n n}
$$

Further more if we choose $m^{\prime}=n^{\prime}=\min (m, n)$ then

$$
e_{n n} \sqsubseteq e_{m n}
$$

(Suppose WLOG that $n \leq m$) by taking the LUB over n we get

$$
\bigsqcup_{n} e_{n n} \sqsubseteq \bigsqcup_{n} e_{m n}
$$

by taking again the LUB over m then we get

$$
\bigsqcup_{m} \bigsqcup_{n} e_{n n} \sqsubseteq \bigsqcup_{m} \bigsqcup_{n} e_{m n}
$$

but $e_{n n}$ is not dependent on m so

$$
\bigsqcup_{n} e_{n n} \sqsubseteq \bigsqcup_{m} \bigsqcup_{n} e_{m n}
$$

similarly by taking the LUB in the inverse order we get

$$
\bigsqcup_{n} e_{n n} \sqsubseteq \bigsqcup_{n} \bigsqcup_{m} e_{m n}
$$

so we conclude that

$$
\bigsqcup_{m} \bigsqcup_{n} e_{n m}=\bigsqcup_{n} e_{n}
$$

and

$$
\bigsqcup_{n} e_{n}=\bigsqcup_{n} \bigsqcup_{m} e_{n m}
$$

which really mean

$$
\bigsqcup_{m} \bigsqcup_{n} e_{n m}=\bigsqcup_{n} e_{n}=\bigsqcup_{n} \bigsqcup_{m} e_{n m}
$$

and that is

$$
\bigsqcup_{n} \bigsqcup_{m} f_{n}\left(d_{m}\right)=\bigsqcup_{n} f_{n}\left(d_{n}\right)=\bigsqcup_{m} \bigsqcup_{n} f_{n}\left(d_{m}\right)
$$

So the LUB of a chain of continuous functions is continuous which means that $[D \leftarrow E$] is a CPO.

$1 \mathrm{REC}^{+}$Language

Syntactic Forms
$d::=f_{1}\left(x_{1}, \ldots, x_{a_{1}}\right)=e_{1} \ldots f_{n}\left(x_{1}, \ldots, x_{a_{n}}\right)=e_{n}$
$e::=n|X| e_{1} \oplus e_{2} \mid$ ifp e_{0} then e_{1} else $e_{2} \mid$ let $x=e_{1}$ in $e_{2} \mid f_{1}\left(e_{1}, e_{2}, \ldots, e_{a_{1}}\right)$

2 Evaluation Contexts

$$
\begin{gathered}
E:=[\cdot]|[\cdot] \oplus e| n \oplus[\cdot]|[\cdot] \wedge e| \text { ifp }[\cdot] \text { then } e_{1} \text { else } e_{2} \mid \text { let } x=[\cdot] \text { in } e \\
\mid f_{1}\left(v_{1}, v_{2}, \ldots,[\cdot], e_{k}, \ldots, e_{a_{i}}\right)
\end{gathered}
$$

3 Operational Semantics

Values may be defined as:

$$
V \quad::=n
$$

Our evaluation relation is the following:

$$
e \xrightarrow{d} e^{\prime}
$$

The actual semantics are:

$$
\begin{array}{ccc}
\frac{n_{3}=n_{1}+n_{2}}{n_{1} \oplus n_{2} \xrightarrow{d} n_{3}} & \frac{n \neq 0}{0 \wedge e \xrightarrow{d} 0} & \frac{n \leq 0}{n \wedge e \xrightarrow{d} e} \\
\frac{n>0}{\text { ifp } n \text { then } e_{1} \text { else } e_{2} \xrightarrow{d} e_{1}} & \xrightarrow[{\text { ifp } n \text { then } e_{1} \text { else } e_{2} \xrightarrow{d} e_{2}}]{\text { let } x=n \text { in } e \xrightarrow{d} e\{n / x\}}
\end{array}
$$

For a CBN evaluation style, we would include the following:
$\frac{f_{i}\left(x_{i}, \ldots, x_{a_{i}}\right)=e_{i} \in d}{f_{i}\left(n_{1}, \ldots, n_{a_{i}}\right) \xrightarrow{d} e_{i}\left\{n_{1} / x_{1}, \ldots, n_{a_{i}} / x_{a_{i}}\right\}}$
For a CBV evaluation style, we would include the following instead:
$\frac{f_{i}\left(x_{i}, \ldots, x_{a_{i}}\right)=e_{i} \in d}{f_{i}\left(e_{1}^{\prime}, \ldots, e_{a_{i}}^{\prime}\right) \xrightarrow{d} e_{i}\left\{e_{1}^{\prime} / x_{1}, \ldots, e_{a_{i}}^{\prime} / x_{a_{i}}\right\}}$
An example program in REC^{+}: (this program finds the first prime after 1000)
$f_{1}(n, m)=n-m * n \wedge\left(n=m *(n / m) \vee f_{1}(n, m+1)\right)$
$f_{2}(n)=f_{1}(n, 2)$
$f_{3}(n)=\operatorname{ifp} f_{2}(n)$ then n else $f_{2}(n+1)$ in $f_{3}(1000)$

4 Denotational Semantics

What is our semantic function? $\mathcal{E} \llbracket e \rrbracket: \mathbb{Z}$? Possibly, but it depends on the function declarations. So we need an environment:

$$
\phi \in F E n v=\left(\mathbb{Z}^{a_{1}} \longrightarrow \text { Result }\right) \times\left(\mathbb{Z}^{a_{2}} \longrightarrow \text { Result }\right) \times \ldots \times\left(\mathbb{Z}^{a_{n}} \longrightarrow \text { Result }\right)
$$

$$
\begin{aligned}
& \left\langle F_{1}, \ldots, F_{n}\right\rangle \\
\rho \in \operatorname{Env}= & \text { Var } \longrightarrow \text { Result }
\end{aligned}
$$

Where Result $=\mathbb{Z}_{\perp}$. So, our semantic functions look like:

$$
\mathcal{E}: \operatorname{Exp} \longrightarrow F E n v \longrightarrow E n v \longrightarrow \text { Result }
$$

$$
\begin{aligned}
\mathcal{E} \llbracket n \rrbracket \phi \rho= & \lfloor n\rfloor \\
\mathcal{E} \llbracket x \rrbracket \phi \rho= & \lfloor\rho(x)\rfloor \\
\mathcal{E} \llbracket e_{1} \oplus e_{2} \rrbracket \phi \rho= & \text { let } v_{1} \in \mathbb{Z}=\mathcal{E} \llbracket e_{1} \rrbracket \phi \rho \text { in } \\
& \quad \text { let } v_{2} \in \mathbb{Z}=\mathcal{E} \llbracket e_{2} \rrbracket \phi \rho \text { in } \\
& \left\lfloor v_{1} \oplus v_{2}\right\rfloor
\end{aligned}
$$

Alternately, we could lift the \oplus operation:

$$
\mathcal{E} \llbracket e_{1} \oplus e_{2} \rrbracket \phi \rho=\mathcal{E} \llbracket e_{1} \rrbracket \phi \rho \oplus_{\perp} \mathcal{E} \llbracket e_{2} \rrbracket \phi \rho
$$

Continuing with our semantics:

$$
\begin{gathered}
\mathcal{E} \llbracket \text { let } x=e_{1} \text { in } e_{2} \rrbracket \phi \rho=\text { let } y \in \mathbb{Z}=\mathcal{E} \llbracket e_{1} \rrbracket \phi \rho \text { in } \\
\mathcal{E} \llbracket e_{2} \rrbracket \phi \rho[x \mapsto y] \\
\mathcal{E} \llbracket f_{i}\left(e_{1}, \ldots, e_{a_{i}}\right) \rrbracket \phi \rho=\text { let } v_{1} \in \mathbb{Z}=\mathcal{E} \llbracket e_{1} \rrbracket \phi \rho, \\
\vdots \\
\\
\\
v_{a_{i}} \in \mathbb{Z}=\mathcal{E} \llbracket e_{a_{i}} \rrbracket \phi \rho \text { in } \\
\left(\pi_{i} \phi\right)\left\langle v_{1}, \ldots, v_{a_{i}}\right\rangle
\end{gathered}
$$

What if we wanted to write a CBN environment instead of a CBV environment? Our domain equations would change:

$$
\begin{aligned}
\text { Env } & =\operatorname{Var} \longrightarrow \mathbb{Z}_{\perp} \\
F E n v & =\left(\mathbb{Z}_{\perp}^{a_{1}} \longrightarrow \mathbb{Z}_{\perp}\right) \times\left(\mathbb{Z}_{\perp}^{a_{2}} \longrightarrow \mathbb{Z}_{\perp}\right) \times \ldots \times\left(\mathbb{Z}_{\perp}^{a_{n}} \longrightarrow \mathbb{Z}_{\perp}\right)
\end{aligned}
$$

As would our semantic functions:

$$
\begin{aligned}
\mathcal{E} \llbracket x \rrbracket \phi \rho & =\rho(x) \\
\mathcal{E} \llbracket \text { let } x=e_{1} \text { in } e_{2} \rrbracket \phi \rho & =\mathcal{E} \llbracket e_{2} \rrbracket \phi \rho\left[x \mapsto \mathcal{E} \llbracket e_{1} \rrbracket \phi \rho\right] \\
\mathcal{E} \llbracket f_{i}\left(e_{1}, \ldots, e_{a_{i}}\right) \rrbracket \phi \rho & =\left(\pi_{i} \phi\right)\left\langle\mathcal{E} \llbracket e_{1} \rrbracket \phi \rho, \ldots, \mathcal{E} \llbracket e_{a_{i}} \rrbracket \phi \rho\right\rangle
\end{aligned}
$$

There's only one issue left with our denotational semantics: where does ϕ come from? Our meaning function:

$$
\begin{aligned}
& \mathcal{D} \llbracket d \rrbracket \in F E n v \\
& \mathcal{E} \llbracket e \rrbracket \mathcal{D} \llbracket d \rrbracket(\lambda x . \phi)=\llbracket d \text { in } e \rrbracket
\end{aligned}
$$

We'll pick up with the definition of \mathcal{D} in the next lecture.

