
CS611 Lecture 19 Denotational Semantics of REC October 13, 2004
Scribe: Grant Goodale, Liviu Popescu Lecturer: Andrew Myers

Continuous functions

For any two CPO’s we denote by [D → E] the set of continuous functions that map D to E. Considering
the pointwise ordering on two functions f, g ∈ [D → E], f v g iff ∀d ∈ D.f(d) v g(d), then is ([D → E],v)
a CPO?

This is equivalent with given a chain f1, f2, ... with fi ∈ [D → E] the LUB of the chain is also in [D → E].
We know that we can get a LUB for D&E we only have to prove that the LUB of D → E is a continuous

function which means that the LUB of a chain of functions is continuous.
The LUB of the chain is also a function so in order to be continuous it must fulfill the equation:

(λd ∈ D.
⊔
n∈ω

fn(d))(
⊔

m∈ω

dm) =
⊔

m∈ω

(λd ∈ D.
⊔
n∈ω

fn(d))(dm)

If we apply
⊔

n∈ω fn to a chain dm ∈ D the LUB of the chain obtained is:⊔
m∈ω

(λd ∈ D.
⊔
n∈ω

fn∈D(dn) =
⊔
n∈ω

⊔
n∈ω

fn(dm)

If we apply
⊔

n∈ω fn to the
⊔

m∈ω dm then we get⊔
n∈ω

fn(
⊔

m∈ω

dm) =
⊔
n∈ω

⊔
m∈ω

fn(dm)

We need to prove now that: ⊔
n∈ω

⊔
m∈ω

fn(dm) =
⊔

m∈ω

⊔
n∈ω

fn(dm)

We will use the exchange lemma to prove that the order of the joins is commutative:
If f is monotonic and continuous then:⊔

n

⊔
m

fn(dm) =
⊔
n

fn(dn) =
⊔
m

⊔
n

fn(dm)

Proof:
Let enm = fn(dm) then we then notice that

n ≤ n′,m ≤ m′ ⇒ enm v en′m′

by choosing m′ = n′ = max(m,n) we get
enm v enn

(Suppose WLOG that m ≤ n) by taking the LUB over n we get⊔
n

enm v
⊔
n

enn

by taking again the LUB over m then we get⊔
m

⊔
n

enm v
⊔
m

⊔
n

enn

but enn is not dependent on m so ⊔
m

⊔
n

enm v
⊔
n

enn

1

similarly by taking the LUB in the inverse order we get⊔
n

⊔
m

enm v
⊔
n

enn

Further more if we choose m′ = n′ = min(m,n) then

enn v emn

(Suppose WLOG that n ≤ m) by taking the LUB over n we get⊔
n

enn v
⊔
n

emn

by taking again the LUB over m then we get⊔
m

⊔
n

enn v
⊔
m

⊔
n

emn

but enn is not dependent on m so ⊔
n

enn v
⊔
m

⊔
n

emn

similarly by taking the LUB in the inverse order we get⊔
n

enn v
⊔
n

⊔
m

emn

so we conclude that ⊔
m

⊔
n

enm =
⊔
n

en

and ⊔
n

en =
⊔
n

⊔
m

enm

which really mean ⊔
m

⊔
n

enm =
⊔
n

en =
⊔
n

⊔
m

enm

and that is ⊔
n

⊔
m

fn(dm) =
⊔
n

fn(dn) =
⊔
m

⊔
n

fn(dm)

�

So the LUB of a chain of continuous functions is continuous which means that [D ← E] is a CPO.

�

1 REC+ Language

Syntactic Forms

d ::= f1(x1, . . . , xa1) = e1 . . . fn(x1, . . . , xan
) = en

e ::= n | X | e1 ⊕ e2 | ifp e0 then e1 else e2 | let x = e1 in e2 | f1(e1, e2, . . . , ea1)

2

2 Evaluation Contexts

E := [·] | [·]⊕ e | n⊕ [·] | [·] ∧ e | ifp [·] then e1 else e2 | let x = [·] in e

| f1(v1, v2, . . . , [·], ek, . . . , eai
)

3 Operational Semantics

Values may be defined as:

v ::= n

Our evaluation relation is the following:

e
d−→ e′

The actual semantics are:

n3 = n1 + n2

n1 ⊕ n2
d−→ n3 0 ∧ e

d−→ 0

n 6= 0

n ∧ e
d−→ e

n > 0

ifp n then e1 else e2
d−→ e1

n ≤ 0

ifp n then e1 else e2
d−→ e2 let x = n in e

d−→ e{n/x}

For a CBN evaluation style, we would include the following:

fi(xi, . . . , xai) = ei ∈ d

fi(n1, . . . , nai)
d−→ ei{n1/x1, . . . , nai/xai}

For a CBV evaluation style, we would include the following instead:

fi(xi, . . . , xai
) = ei ∈ d

fi(e′1, . . . , e
′
ai

) d−→ ei{e′1/x1, . . . , e
′
ai

/xai
}

An example program in REC+: (this program finds the first prime after 1000)

f1(n, m) = n−m ∗ n ∧ (n = m ∗ (n/m) ∨ f1(n, m + 1))
f2(n) = f1(n, 2)
f3(n) = ifp f2(n) then n else f2(n + 1) in
f3(1000)

4 Denotational Semantics

What is our semantic function? E [[e]] : Z ? Possibly, but it depends on the function declarations. So we need
an environment:

φ ∈ FEnv = (Za1 −→ Result) × (Za2 −→ Result)× . . . × (Zan −→ Result)

3

〈F1, . . . , Fn〉
ρ ∈ Env = Var −→ Result

Where Result = Z⊥. So, our semantic functions look like:

E : Exp −→ FEnv −→ Env −→ Result

E [[n]]φρ = bnc
E [[x]]φρ = bρ(x)c

E [[e1 ⊕ e2]]φρ = let v1 ∈ Z = E [[e1]]φρ in

let v2 ∈ Z = E [[e2]]φρ in

bv1 ⊕ v2c

Alternately, we could lift the ⊕ operation:

E [[e1 ⊕ e2]]φρ = E [[e1]]φρ ⊕⊥ E [[e2]]φρ

Continuing with our semantics:

E [[let x = e1 in e2]]φρ = let y ∈ Z = E [[e1]]φρ in

E [[e2]]φρ [x 7→ y]
E [[fi(e1, . . . , eai)]]φρ = let v1 ∈ Z = E [[e1]]φρ ,

...
vai ∈ Z = E [[eai]]φρ in

(πiφ)〈v1, . . . , vai〉

What if we wanted to write a CBN environment instead of a CBV environment? Our domain equations
would change:

Env = Var −→ Z⊥

FEnv = (Za1
⊥ −→ Z⊥) × (Za2

⊥ −→ Z⊥) × . . . × (Zan

⊥ −→ Z⊥)

As would our semantic functions:

E [[x]]φρ = ρ(x)
E [[let x = e1 in e2]]φρ = E [[e2]]φρ [x 7→ E [[e1]]φρ]
E [[fi(e1, . . . , eai

)]]φρ = (πiφ)〈E [[e1]]φρ, . . . , E [[eai
]]φρ〉

There’s only one issue left with our denotational semantics: where does φ come from? Our meaning
function:

D[[d]] ∈ FEnv

E [[e]]D[[d]](λx.φ) = [[d in e]]

4

We’ll pick up with the definition of D in the next lecture.

5

