
CS611 Lecture 18 Domain constructions and a metalanguage 8th October, 2004
Scribe: Yee Jiun Song, Dan Stowell Lecturer: Andrew Myers

Today’s notes cover:

• revisiting the fixed point theorem

• a metalanguage for denotational semantics

1 Fixed Point Theorem, Reprise

Last time, we showed that given a function f : D 7→ D, with D being a pointed c.p.o. and f continuous,
(i.e., f : [D 7→ D], then fix f =

⊔
fn(⊥) is the least fixed point of f . Perhaps we should revisit this proof to

try to eliminate any confusion.
Assume y is a fixed point of f .

⊥v y

f(⊥) v y

f2(⊥) v y)

...

∀n.fn(⊥) v y⊔
fn v y

Now we know that fix f is smaller than any fixed point y and must be the least fixed point.
But how does the concept of a complete partial order have anything to do with the semantics of a

programming language? If we take f as the rule operator R, v as ≤, and ⊥ as ∅, we can use what we’ve
learned about fixed points to describe programs.

As a quick aside, what does continuity mean? All behavior of a function is explained by finite approxi-
mation. In other words, nothing funny happens at infinity.

C[[while b do c]] = fix λd ∈ (Σ 7→ Σ⊥).(λσ ∈ Σ. if ¬B[[b]]σ then σ else d∗(C[[c]]σ))

We need to show that the function we are taking a fixed point of is continuous. For our purposes,
continuity means ∀ω − chainsd1, d2, . . . , f(

⊔
dn =

⊔
f(dn. We also want to show that the function is

monotonic, i.e. d v d′ ⇒ f(d) v f(d′). In this case, d is a function that we want to show ∀σ.f(d)(σ) v
f(d′)(σ).

if ¬B[[b]]σ then σ else d∗(C[[c]]σ) v if ¬B[[b]]σ then σ else d′∗(C[[c]]σ)

If B[[b]] is false, then we have σ v σ, which is true by definition. Otherwise, we have d∗(C[[c]]σ) v
d′∗(C[[c]]σ). C[[c]] will either return ⊥ or σ′. We know that ⊥v⊥ and d(σ′) v d′(σ′). The function we are
trying to take the fix of is monotonic.

But how do we know that it is continuous?⊔
λσ ∈ Σ. if ¬B[[b]] then σ else d∗n(C[[c]]σ)

λσ ∈ Σ.
⊔

if ¬B[[b]] then σ else d∗n(C[[c]]σ)

λσ ∈ Σ. if ¬B[[b]] then σ else
⊔

d∗n(C[[c]]σ)

λσ ∈ Σ. if ¬B[[b]] then σ else (
⊔

dn)∗(C[[c]]σ)

1



2 A Metalanguage

Proving functions to be continuous gets tedious after a while. Why not write a metalanguage in which
continuity comes naturally? We can then use this metalanguage in describing denotational semantics.

In this metalanguage, we’ll define “types” as domains (i.e., CPOs). We’ll be dealing with discrete CPOs,
such as the integers. We’ll also define the unit CPO as {unit}.

2.1 Lifting

Given some complete partial order D, we know that D⊥ is also a complete partial order:
Given that d ∈ D, the elements of D⊥ are bDc and ⊥D.
Ordering: d v d′ ⇒ bdc v bd′c
Also, ⊥v bdc
Now, in order for this to be a complete partial order, we require that ever chain have a least upper bound.
⊥ v ⊥ v ... ⇒ LUB = ⊥

⊥ v bd1c v bd2c v ... ⇒ LUB = b
⊔

dnc

2.2 Product

The product D × E is a CPO of elements 〈d, e〉 where d ∈ D, and e ∈ E. They are ordered as such:

〈d1, e1〉 v 〈d2, e2〉 ⇔ d1 v d2 ∧ e1 v e2

Is it a CPO? Consider this:

〈d1, e1〉 v 〈d2, e2〉 v ...⊔
〈dn, en〉 = 〈

⊔
dn,

⊔
em〉

In addition, the CPO D × E is pointed if both D and E are pointed. ⊥D×E= 〈D⊥, E⊥〉.

2.3 Tupling and Projection

Tupling: 〈d1, d2, d3, ..., dn〉
Projection: πi〈d1, d2, d3, ..., dn〉 = di

2.4 Sums

Elements in D1 + D2 are either D1 or D2 tagged.
Elements: in1(d1) or in2(d2)
Ordering: ini(d) v ini(d′) ⇔ d vDi d′

2.5 Functions

Given CPOs D and E, [D → E] ⊆ ED is also a CPO.
Ordering: f v g ⇒ f(d) v g(d)

In order for this to be a CPO, if we take
⊔

fn, we should get a continuous function:⊔
(
⊔

fn)dm = (
⊔

fn)(
⊔

dm)
Is this true? To be continued. . .

2


