Today's notes cover:

- revisiting the fixed point theorem
- a metalanguage for denotational semantics

1 Fixed Point Theorem, Reprise

Last time, we showed that given a function $f: D \mapsto D$, with D being a pointed c.p.o. and f continuous, (i.e., $f:[D \mapsto D]$, then fix $f=\bigsqcup f^{n}(\perp)$ is the least fixed point of f. Perhaps we should revisit this proof to try to eliminate any confusion.

Assume y is a fixed point of f.

$$
\begin{gathered}
\perp \sqsubseteq y \\
f(\perp) \sqsubseteq y \\
\left.f^{2}(\perp) \sqsubseteq y\right) \\
\vdots \\
\forall n \cdot f^{n}(\perp) \sqsubseteq y \\
\bigsqcup f^{n} \sqsubseteq y
\end{gathered}
$$

Now we know that fix f is smaller than any fixed point y and must be the least fixed point.
But how does the concept of a complete partial order have anything to do with the semantics of a programming language? If we take f as the rule operator R, \sqsubseteq as \leq, and \perp as \emptyset, we can use what we've learned about fixed points to describe programs.

As a quick aside, what does continuity mean? All behavior of a function is explained by finite approximation. In other words, nothing funny happens at infinity.
$C \llbracket$ while b do $c \rrbracket=$ fix $\lambda d \in\left(\Sigma \mapsto \Sigma_{\perp}\right) .\left(\lambda \sigma \in \Sigma\right.$. if $\neg B \llbracket b \rrbracket \sigma$ then σ else $\left.d^{*}(C \llbracket c \rrbracket \sigma)\right)$
We need to show that the function we are taking a fixed point of is continuous. For our purposes, continuity means $\forall \omega-$ chains $d 1, d 2, \ldots, f\left(\bigsqcup d_{n}=\bigsqcup f\left(d_{n}\right.\right.$. We also want to show that the function is monotonic, i.e. $d \sqsubseteq d^{\prime} \Rightarrow f(d) \sqsubseteq f\left(d^{\prime}\right)$. In this case, d is a function that we want to show $\forall \sigma . f(d)(\sigma) \sqsubseteq$ $f\left(d^{\prime}\right)(\sigma)$.

$$
\text { if } \neg B \llbracket b \rrbracket \sigma \text { then } \sigma \text { else } d^{*}(C \llbracket c \rrbracket \sigma) \sqsubseteq \text { if } \neg B \llbracket b \rrbracket \sigma \text { then } \sigma \text { else } d^{* *}(C \llbracket c \rrbracket \sigma)
$$

If $B \llbracket b \rrbracket$ is false, then we have $\sigma \sqsubseteq \sigma$, which is true by definition. Otherwise, we have $d^{*}(C \llbracket c \rrbracket \sigma) \sqsubseteq$ $d^{* *}(C \llbracket c \rrbracket \sigma)$. $C \llbracket c \rrbracket$ will either return \perp or σ^{\prime}. We know that $\perp \sqsubseteq \perp$ and $d\left(\sigma^{\prime}\right) \sqsubseteq d^{\prime}\left(\sigma^{\prime}\right)$. The function we are trying to take the fix of is monotonic.

But how do we know that it is continuous?

$$
\begin{aligned}
& \bigsqcup \lambda \sigma \in \Sigma \text {. if } \neg B \llbracket b \rrbracket \text { then } \sigma \text { else } d_{n}^{*}(C \llbracket c \rrbracket \sigma) \\
& \lambda \sigma \in \Sigma . \bigsqcup \text { if } \neg B \llbracket b \rrbracket \text { then } \sigma \text { else } d_{n}^{*}(C \llbracket c \rrbracket \sigma) \\
& \lambda \sigma \in \Sigma \text {. if } \neg B \llbracket b \rrbracket \text { then } \sigma \text { else } \bigsqcup d_{n}^{*}(C \llbracket c \rrbracket \sigma) \\
& \lambda \sigma \in \Sigma \text {. if } \neg B \llbracket b \rrbracket \text { then } \sigma \text { else }\left(\left\lfloor d_{n}\right)^{*}(C \llbracket c \rrbracket \sigma)\right.
\end{aligned}
$$

2 A Metalanguage

Proving functions to be continuous gets tedious after a while. Why not write a metalanguage in which continuity comes naturally? We can then use this metalanguage in describing denotational semantics.

In this metalanguage, we'll define "types" as domains (i.e., CPOs). We'll be dealing with discrete CPOs, such as the integers. We'll also define the unit CPO as \{unit \}.

2.1 Lifting

Given some complete partial order D , we know that D_{\perp} is also a complete partial order:
Given that $\mathrm{d} \in \mathrm{D}$, the elements of D_{\perp} are $\lfloor D\rfloor$ and \perp_{D}.
Ordering: $d \sqsubseteq d^{\prime} \Rightarrow\lfloor d\rfloor \sqsubseteq\left\lfloor d^{\prime}\right\rfloor$
Also, $\perp \sqsubseteq\lfloor d\rfloor$
Now, in order for this to be a complete partial order, we require that ever chain have a least upper bound.
$\perp \sqsubseteq \perp \sqsubseteq \ldots \Rightarrow \mathrm{LUB}=\perp$
$\perp \sqsubseteq\left\lfloor d_{1}\right\rfloor \sqsubseteq\left\lfloor d_{2}\right\rfloor \sqsubseteq \ldots \Rightarrow \mathrm{LUB}=\left\lfloor\bigsqcup d_{n}\right\rfloor$

2.2 Product

The product $D \times E$ is a CPO of elements $\langle d, e\rangle$ where $d \in D$, and $e \in E$. They are ordered as such:

$$
\left\langle d_{1}, e_{1}\right\rangle \sqsubseteq\left\langle d_{2}, e_{2}\right\rangle \Leftrightarrow d_{1} \sqsubseteq d_{2} \wedge e_{1} \sqsubseteq e_{2}
$$

Is it a CPO? Consider this:

$$
\begin{aligned}
& \left\langle d_{1}, e_{1}\right\rangle \sqsubseteq\left\langle d_{2}, e_{2}\right\rangle \sqsubseteq \ldots \\
& \bigsqcup\left\langle d_{n}, e_{n}\right\rangle=\left\langle\bigsqcup d_{n}, \bigsqcup e_{m}\right\rangle
\end{aligned}
$$

In addition, the CPO $D \times E$ is pointed if both D and E are pointed. $\perp_{D \times E}=\left\langle D_{\perp}, E_{\perp}\right\rangle$.

2.3 Tupling and Projection

Tupling: $\left\langle d_{1}, d_{2}, d_{3}, \ldots, d_{n}\right\rangle$
Projection: $\pi_{i}\left\langle d_{1}, d_{2}, d_{3}, \ldots, d_{n}\right\rangle=d_{i}$

2.4 Sums

Elements in $D_{1}+D_{2}$ are either D_{1} or D_{2} tagged.
Elements: $i_{1}\left(d_{1}\right)$ or $\operatorname{in}_{2}\left(d_{2}\right)$
Ordering: $\operatorname{in}_{\mathrm{i}}(d) \sqsubseteq \operatorname{in}_{\mathrm{i}}\left(d^{\prime}\right) \Leftrightarrow d \sqsubseteq_{D_{i}} d^{\prime}$

2.5 Functions

Given CPOs D and $\mathrm{E},[D \rightarrow E] \subseteq E^{D}$ is also a CPO.
Ordering: $f \sqsubseteq g \Rightarrow f(d) \sqsubseteq g(d)$
In order for this to be a CPO, if we take $\bigsqcup f_{n}$, we should get a continuous function:
$\bigsqcup\left(\bigsqcup f_{n}\right) d_{m}=\left(\bigsqcup f_{n}\right)\left(\bigsqcup d_{m}\right)$
Is this true? To be continued...

