
CS611 Lecture 16–17 Denotational Semantics of IMP October 4–6, 2004
Scribe: Andrew Myers (based on earlier student notes) Lecturer: Andrew Myers

These notes cover the denotational semantics of IMP, partial orders, and the fixed-point theorem.

1 Operational Semantics vs. Denotational Semantics

We have described the behaviour of programs in an operational manner by inductively defining transition
relations to express evaluation and execution. It is fairly easy to to turn the description of the semantics
into a an interpreter for the programming language. However, we still have not arrived at a extensional
description of programs. We have explored semantic definitions based on translation to a better-understood
language, but this in some sense just pushes the problem somewhere else.

The denotational semantics approach is also based on translation, but the target of the translation is
mathematical objects, usually functions, rather than a progamming language. A semantic function will
map syntax to corresponding denotations (meanings), arriving at an extensional meaning for the program.
Alternatively, we can think of the semantic function as compiling the program into a mathematical object.

2 Semantic Functions

Denotational semantics operates on expressions to produce mathematical objects that are the meaning of
the expression. The mechanism for this is a semantic function, which is usually a mathematical function.

Example:
[[(λx. x)]] = λx ∈ D . x

Here [[·]] is a semantic function that maps the expression to its denotation, in this case a mathematical
function from some domain D to the same codomain. compiler. The semantic function takes as input (λx. x),
which is a piece of abstract syntax, which we know is really an abstract syntax tree.

The lambda expression on the right-hand side is a mathematical function, so it can also be represented
by its extension: {(a, a) | a ∈ D}.

3 Modeling issues

We have already been using lambda terms to describe programs, but some of the expressions we have written
down have been problematic from the mathematical perspective. When we write down denotations, we need
to make sure that all of the denotations are mathematically well-defined.

For example, consider the identity function above. What is the domain D? We have not identified a
set for D that can adequately model the lambda calculus and that can satisfy the equational theory of the
lambda calculus. And not just any D will work. For the denotational semantics to be sound, the various
reductions cannot change the meaning according to the semantic function. For example, we should have
[[(λx. e)e′]] = [[e{e′/x}]], because these terms are beta-equivalent.

But coming up with such a D is not easy. Consider the term λx. (x x), in which x is applied to itself.
If x is drawn from some domain D, then it seems that the domain D must be isomorphic to the function
space D → D in order to be able to apply x to itself. But a simple diagonalization argument will convince
us that these domains cannot be isomorphic. Suppose we had a one-to-one mapping f from elements of D
to elements of D → E, where E is any set containing at least two elements. But then consider the function
λx ∈ D.¬(f(x)(x)), where ¬ is some function on E → E that maps no element of E to itself. This function
cannot possibly be the image in f of any element of D, because it gives a different answer than f(x) for
every x ∈ D. So by contradiction the isomorphism cannot exist.

We have already been using translation to explain language semantics and getting some insight. And
the denotational semantics we will be exploring will be similar. But some of the tricks we were using earlier
won’t work. Because self-application leads to the above paradox (which is really Russell’s paradox), the Y
combinator is not acceptable as part of the semantics.
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4 Parsing lambda expressions and function domains

We will continue to use some conventions to make our semantics more concise. The expression λxyz. e means
a function that takes the three variables x, y, and z as input and gives e as output. However, this function
can be curried, applying one argument at a time, so it is the same as λx. λy. λz. e.

λ−expressions extend as far to the right as possible. Thus, λx. λy. λz. x λw.w = λx. (λy. (λz. (x (λw. w)))).
It doesn’t hurt to throw in extra parentheses to make things clearer, though! Application is left associative.
Thus, xyz = (xy)z.

We will usually write the type (domain) of the argument of a function unless the name of the argument
makes it obvious. For example, consider the following function that adds two integers:

PLUS = λx ∈ Z . λy ∈ Z . x + y

This function takes x ∈ Z and y ∈ Z (one argument at a time) and yields x + y ∈ Z. Thus, the domain
is Z and the codomain is Z → Z. So we have

PLUS : Z → (Z → Z)

While application associates to the left, the constructor (→) associates to the right. For example, here
we do not need parentheses:

PLUS : Z → Z → Z

Note that we’re giving the domain of a function argument using the symbol ∈. It’s more typical to use
a colon (:), but we’ll reserve that for when we are writing functions in a typed programming language.

5 Semantic Functions for IMP

Recall now the three kinds of expressions in IMP:

• arithmetic expressions Aexp:

a ::= n | x | a0 + a1 | a0 − a1 | a0 × a1

• boolean expressions Bexp:

b ::= true | false | a0 ≤ a1 | a0 = a1 | ¬b | b0 ∧ b1 | b0 ∨ b1

• commands Com:

x := a0 | skip | if b0 then c0 else c1 | while b0 do c0

What is the intrinsic meaning of these syntactic categories?
Take for example the arithmetic expressions. Our first thought when we see an expression is to evaluate

it and thus the meaning of an arithmetic expression is an integer. However, this doesn’t explain the meaning
of an evaluation depends on the particular store we have: given store σ, each expression a denotes a unique
integer, so the meaning of an arithmetic expression is really a function from stores to integers. Hence we
can define a function A which translates the syntax of the arithmetic expressions into their meaning:

A[[a]]σ = n ⇔ 〈a, σ〉 ⇓ n

Similarly, given a particular store σ boolean expressions b denotes a unique truth value t ∈ T = {true, false}.
We can define:

B[[b]]σ = t ⇔ 〈b, σ〉 ⇓ t

Since a command c maps one store into another, we define:

C[[c]]σ = σ′ ⇔ 〈c, σ〉 ⇓ σ′

Therefore, the meaning functions A,B, C have the following types:
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• A ∈ Aexp → (Σ → N)

• B ∈ Bexp → (Σ → T)

• C ∈ Com → (Σ → Σ)

We say that the arithmetic expression a denotes A[[a]] and A[[a]] is a denotation of a. Similarly, B[[b]] is a
denotation of the boolean b and C[[c]] is a denotation of command c. Each denotation is in fact a function:

• A[[a]] : Σ → N

• B[[b]] : Σ → T

• C[[c]] : Σ → Σ

This signature for C won’t quite work, however, because of the possibility of non-termination. We’ll see how
to fix it shortly.

The functions A,B, C are defined by structural induction.

5.1 Arithmetic Denotations

First, we define the denotation of arithmetic expressions A ∈ Aexp → (Σ → N) using structural induction:

• A[[n]] = λσ ∈ Σ. n

This means that the denotation of n is a function which associates the natural number n to any state σ.
Similarly,

• A[[x]] = λσ ∈ Σ. σx

• A[[a0 + a1]] = λσ ∈ Σ.A[[a0]]σ +A[[a1]]σ

• A[[a0 − a1]] = λσ ∈ Σ.A[[a0]]σ −A[[a1]]σ

• A[[a0 × a1]] = λσ ∈ Σ.A[[a0]]σ ×A[[a1]]σ

Notice that the signs +,−,× on the left-hand sides represent syntactic signs in IMP, whereas the signs on
the right represent operations on numbers.

We can write the last three definitions as inductive definitions, similar to the inference rules in the
operational semantics:

A[[a0]] = f0 A[[a1]] = f1

A[[a0 + a1]] = λσ ∈ Σ. f0σ + f1σ

Instead of using λ notation, we can present the definition of the semantics as a relation between states
and numbers:

• A[[n]] = {(σ, n) | σ ∈ Σ}

• A[[x]] = {(σ, σ(x) | σ ∈ Σ}

• A[[a0 + a1]] = {(σ, n0 + n1) | (σ, n0) ∈ A[[a0]] ∧ (σ, n1) ∈ A[[a1]]}

• A[[a0 − a1]] = {(σ, n0 − n1) | (σ, n0) ∈ A[[a0]] ∧ (σ, n1) ∈ A[[a1]]}

• A[[a0 × a1]] = {(σ, n0 × n1) | (σ, n0) ∈ A[[a0]] ∧ (σ, n1) ∈ A[[a1]]}
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5.2 Boolean Denotations

As for the arithmetic expressions, the function B : Bexp → (Σ → T ) is defined using induction on the
structure of expressions.

We start by applying B to the booleans with no subexpressions as follows:

• B[[true]] = λσ ∈ Σ.true

• B[[false]] = λσ ∈ Σ.false

After applying both sides of the first function to σ, we get B[[true]]σ = true by a β reduction. Not only is
this notation more compact, it makes the meaning more clear.

The rest of the rules for boolean denotations are as follows:

• B[[a0 = a1]]σ = ifA[[a0]]σ = A[[a1]]σ then true else false

• B[[a0 ≤ a1]]σ = ifA[[a0]]σ ≤ A[[a1]]σ then true else false

• B[[b0 ∧ b1]]σ = if B[[b0]]σ ∧ B[[b1]]σ then true else false

• B[[b0 ∨ b1]]σ = if B[[b0]]σ ∨ B[[b1]]σ then true else false

5.3 Command Denotations

In order to derive the rules for command denotations, we first note that some commands c do not terminate.
Formally,

(¬∃σ′.〈c, σ〉 ⇓ σ′)

An example of such a command is while true do skip. One way to think about commands is as partial
functions from states to states (Σ ⇀ Σ). For example, consider the command (while x = 0 do skip).
Its denotation is given by {(σ, σ) | σ(x) = 0}, which is not defined for σ(x) 6= 0. Thus, the corresponding
command is not total.

In order to make denotations total, we add a new state, ⊥, called bottom, to represent non-termination.
We write Σ⊥ to mean the set Σ augmented with the element ⊥, that is, Σ ∪ {⊥}. This is read as the “lift”
of Σ. Commands become functions from Σ to Σ⊥, and C ∈ Com → (Σ → Σ⊥).

Using ⊥ we can now extensionally specify the behavior of commands, including nontermination, in a way
that wasn’t possible with operational semantics.

The function C : Com → Σ → Σ⊥ is also defined using induction on the structure of commands as
follows:

• C[[skip]]σ = σ

• C[[x := a]]σ = σ[x 7→ A[[a]]σ]

• C[[c0; c1]]σ =
{
C[[c1]](C[[c0]]σ) (if C[[c0]]σ) 6=⊥)
⊥ (otherwise)

• C[[if b then c0 else c1]]σ = if B[[b]]σ then C[[c0]]σ else C[[c1]]σ

Note: It’s ok to use B in the definition of the denotations, since it’s not circular.

Let us now try to define the denotation for while. In a similar manner with the above definitions, we
would like to write:

C[[while b do c]]σ = if ¬B[[b]]σ then σ else C[[while b do c]](C[[c]]σ)
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Unfortunately, this definition is circular: it involves C[[while bdo c]] on both sides. The above is actually not
a definition, but an equation. We can also write this equation as an equation about sets:

C[[while b do c]] = {(σ, σ) | ¬ B[[b]]σ}
∪ {(σ,⊥) | B[[b]]σ ∧ C[[c]]σ =⊥}
∪ {(σ, σ′) | B[[b]]σ ∧ C[[c]]σ = σ′′ 6=⊥ ∧ C[[while b do c]]σ′′ = σ′}

We can rewrite this as
C[[while b do c]] = {(σ, σ) | ¬B[[b]]σ}

∪ {(σ,⊥) | B[[b]]σ ∧ (σ,⊥) ∈ C[[c]]}
∪ {(σ, σ′) | B[[b]]σ ∧ (σ, σ′′) ∈ C[[c]] ∧ (σ′′, σ′) ∈ C[[while b do c]]}

where σ′′ 6=⊥.
We must come up with an alternative definition for while. In order to do this, we will construct a

function F such that the denotation of while is a fixed point of F . We can define F equivalently using either
sets or lambda notation (here d is a command denotation):

F = λd ∈ Σ → Σ⊥ . {(σ, σ) | ¬B[[b]]σ}
∪ {(σ,⊥) | B[[b]]σ ∧ (σ,⊥) ∈ C[[c]]}
∪ {(σ, σ′) | B[[b]]σ ∧ (Σ,Σ′′) ∈ C[[c]] ∧ (σ′′, σ′) ∈ f}

F = λd ∈ Σ → Σ⊥ . λσ ∈ Σ . if ¬B[[b]] then σ else d∗(C[[c]]σ).

where given f : D → E⊥, we define f∗ : D⊥ → E⊥ = λx ∈ D⊥ . if x =⊥ then ⊥ else x Then, the
denotation of while is a fixed point of F , i.e., C[[while b do c]] = F (C[[while b do c]]).

6 Finding fixed points

Suppose we had an operator fix that could find fixed points. What we would like to do is define

C[[while b do c]] = fix(F )
= fix(λd ∈ Σ → Σ⊥ . λσ ∈ Σ. if ¬B[[b]]σ then σ else d∗(C[[c]]σ))∗

But which fixed point of F do we want? We would like to take the “least” fixed point, in the sense that we
want C[[while b do c]] to give a non-⊥ result only when required by the intended semantics. (For example,
we want C[[while true do skip]]σ =⊥ for all σ.)

First, let’s get an idea what this least fixed point might look like. Iterating F applied to some “minimal”
function d⊥ = λσ. ⊥ yields a sequence of successively better approximations to C[[while b do c]]:

d0 = d⊥

d1 = F (d⊥)
= λσ. if ¬B[[b]] then σ else ⊥

d2 = F (F (d⊥))
= λσ. if ¬B[[b]]σ then σ else

if ¬B[[b]]C[[c]]σ then C[[c]]σ else ⊥
d3 = F (F (F (d⊥)))

= λσ. if ¬B[[b]]σ then σ else

if ¬B[[b]]C[[c]]σ then C[[c]]σ else

if ¬B[[b]]C[[c]]C[[c]]σ then C[[c]]C[[c]]σ else ⊥
...

dn = Fn(d⊥)
...
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The “limit” of this sequence will be the denotation of while b do c. To take this limit, and to show that
it is the least fixed point, we will need more mathematical machinery, starting with the the theory of partial
orders.

7 Partial Orders

A partial order (also known as a partially ordered set or poset) is a pair (S,v), where

• S is a set of elements.

• v is a relation on S which is:

i. reflexive: x v x

ii. transitive: (x v y ∧ y v z) ⇒ x v z

iii. antisymmetric: (x v y ∧ y v x) ⇒ x = y

Examples:

• (Z,≤), where Z is the integers and ≤ is the usual ordering.

• (Z,=) (Note that unequal elements are incomparable in this order. Partial orders ordered by the
identity relation, =, are called discrete.)

• (2S ,⊆) (Here, 2S denotes the powerset of S, the set of all subsets of S, often written P(S), and in
Winskel, Pow(S).)

• (2S ,⊇)

• (S,w), if we are given that (S,v) is a partial order.

• (ω, |), where ω = {0, 1, 2, . . .} and a|b ⇔ (a divides b) ⇔ (b = ka for some k ∈ ω). Note that for any
n ∈ ω, we have n|0; we call 0 an upper bound for ω (but only in this ordering, of course!).

Non-examples:

• (Z, <) is not a partial order, because < is not reflexive.

• (Z,v), where m v n ⇔ |m| ≤ |n|, is not a partial order because v is not anti-symmetric: −1 v 1 and
1 v − 1, but −1 6= 1.

The “partial” in partial order comes from the fact that our definition does not require these orders to
be total; e.g., in the partial order (2{a,b},⊆), the elements {a} and {b} are incomparable: neither {a} ⊆ {b}
nor {b} ⊆ {a} hold.

Hasse diagrams Partial orders can be described pictorially using Hasse diagrams1. In a Hasse diagram,
each element of the partial order is displayed as a (possibly labeled) point, and lines are drawn between
these points, according to these rules:

1. If x and y are elements of the partial order, and x v y, then the point corresponding to x is drawn
lower in the diagram than the point corresponding to y.

2. A line is drawn between the points representing two elements x and y iff x v y and ¬∃z in the partial
order, distinct from x and y, such that x v z and z v y (i.e., the ordering relation between x and y is
not due to transitivity).

1Named after Helmut Hasse, 1898-1979. Hasse published fundamental results in algebraic number theory, including the
Hasse (or “local-global”) principle. He succeeded Hilbert and Weyl as the chair of the Mathematical Institute at Göttingen.
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An example of a Hasse diagram for the partial order on the set 2{a,b,c} using ⊆ as the binary relation is:

2

CS 611 Fall '00 -- Andrew Myers, Cornell University 7

Orderings

• Fixed points of denotation of while differ 
only in case of non-termination

• We want ��while true do skip� σ = ⊥

• Idea: define ordering on fixed points of Γ
such that least fixed point is the one we 
want

• Compare to inductive definitions
– ordering was ⊆

– doesn’t work here: how to order elements of 
Σ⊥→Σ⊥?
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Partial orders
• A partial-order is

– a set of elements S

– an relation x � y that is
• reflexive: x 
 x

• transitive: (x 
 y ∧ y 
 z) � x 
 z

• anti-symmetric: (x 
 y ∧ y 
 x) � x = y

– two elements may be incomparable

• Examples (S, �)
(Z, ≤) (Z,=)? (Z, <)?

(2S, ⊆) (2S, �)

(S, �)
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Hasse diagram: 2{a,b,c}, ⊆⊆⊆⊆

{a}{b}

{a,b}

{c}

{a,c}{b,c}

{a,b,c}

x

y

x � y

{ }


 = ⊆
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LUBs and Chains
• Given a subset B ⊆ S, y is an upper bound

of B if ∀x∈B . x � y

• y is a least upper bound (	B) if y � z for 
all upper bounds z

• A chain is a sequence of elements
x0, x1, x2, … such that x0� x1� x2�…

• For any finite chain x0,…,xn, xn is LUB

• What about infinite chains?

x0

x1

x2

…
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Complete partial orders
• A complete partial order (cpo) is a partial 

order in which every chain has a least 
upper bound

• Examples (S, �)

(2S, ⊆)

(ω ∪ {∞}, ≤)

([0,1], ≤)

(S,=)?  (S, �)?

• cpo may have least element 
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Information content
• We consider one domain element to be 

less than another if it gives less 
information

• Non-termination gives less information 
than any store (
 � x)

• Stores σ are incomparable unless equal

• Recall: trying to find least fixed point in 
Σ

�
→Σ

�
; how to order functions?




… σ1 σ2 σ3 σ4 …
Σ

�
: cpo?

Least upper bounds Given a partial order (S,v), and a subset B ⊆ S, y is an upper bound of B iff
∀x ∈ B.x v y. In addition, y is a least upper bound iff y is an upper bound and y v z for all upper bounds
z of B. We may abbreviate “least upper bound” as LUB or lub. We shall notate the LUB of a subset B as⊔

B. We may also make this an infix operator, as in
⊔
{x1, . . . , xm} = x1 t . . . t xm. This is also known as

the join of elements x1, . . . , xm.

Chains A chain is a pairwise comparable sequence of elements from a partial order (i.e., elements x0, x1, x2 . . .
such that x0 v x1 v x2 v . . .). For any finite chain, its LUB is its last element (e.g.,

⊔
{x0, x1, . . . , xn} = xn).

Infinite chains (Winskell: ω-chains) may also have LUBs.

Complete partial orders A complete partial order (CPO) is a partial order in which every chain has a
LUB. Note that the requirement for every chain is trivial for finite chains (and thus finite partial orders) –
it is the infinite chains that can cause trouble.

Some examples of CPOs:

• (2S ,⊆) Here S itself is the LUB for the chain of all elements.

• (ω ∪ {∞},≤) Here ∞ is the LUB for any infinite chain: ∀w ∈ ω.w ≤ ∞.

• ([0, 1],≤) where [0, 1] is the closed continuum, and 1 is a LUB for infinite chains. Note that making
the continuum open at the top – [0, 1) – would cause this to no longer be a CPO, since there would be
no LUB for infinite chains such as 1

2 , 2
3 , 3

4 , . . .

• (S, =) This is a discrete CPO, just as it is a discrete partial order. The only infinite chains are of the
sort xi v xi v xi . . ., of which xi is itself a LUB.

Even if (S,v) is a CPO, (S,w) is not necessarily a CPO. Consider ((0, 1],≤), which is a CPO. Reversing
its binary relation yields ((0, 1],≥) which is not a CPO, just as ([0, 1),≤) above was not.

CPOs can also have a least element, written ⊥, such that ∀x.⊥ v x. We call a CPO with such an element
a pointed CPO. Winskel instead uses CPO with bottom.

8 Least fixed points of functions

Recall that at the end of the last lecture we were attempting to define the least fixed point operator fix over
the domain (Σ → Σ⊥) so that we could determine calculate fixed points of F : (Σ → Σ⊥) → (Σ → Σ⊥). It
was unclear, however, what the “least” fixed point of this domain would be—how is one function from states
to states “less” than another? We’ve now developed the theory to answer that question.

We define the ordering of states by information content : σ v σ′ iff σ gives less (or at most as much)
information than σ′. Non-termination is defined to provide less information than any other state: ∀σ ∈ Σ. v
σ. In addition, we have that σ v σ. No other pairs of states are defined to be comparable. The lifted set of
possible states Σ⊥ can now be characterized as a flat CPO (a lifted discrete CPO):

• Its elements are elements of Σ ∪ {⊥}.
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• The ordering relation v satisfies the reflexive, transitive, and anti-symmetric properties.

• There are three types of infinite chains, each with a LUB:

1. ⊥ v ⊥ v . . ., LUB = ⊥
2. σ v σ v . . ., LUB = σ

3. ⊥ v ⊥ v . . . v σ v σ v . . ., LUB = σ

9 Functions

We are now ready to define an ordering relation on functions. Functions will be ordered using a pointwise
ordering on their results. Given a CPO E, a domain D, f ∈ D → E, and g ∈ D → E:

f vD→E g
def⇐⇒ ∀x ∈ D.f(x) ⊆E g(x)

Note that we are defining a new partial order over D → E, and that this CPO is pointed if E is pointed,
since ⊥D→E = λx ∈ D.⊥E .

As an example, consider two functions Z → Z⊥:

f = λx ∈ Z.if x = 0 then⊥ else x

g = λx ∈ Z.x

We conclude f v g because f(x) v g(x) for all x; in particular, f(0) = ⊥ v 1 = g(0).
If E is a CPO, then the function space D → E is also a CPO. We show that given a chain of functions

f1 v f2 v f3 . . ., the function λd ∈ D.
⊔

n∈ω fn(d) is a least upper bound for this chain. Consider any
function g that is an upper bound for all the fn. In that case, we have:

∀n ∈ ω.∀d ∈ D.fn(d) v g(d)
⇐⇒ ∀d ∈ D.∀n ∈ ω.fn(d) v g(d)

Because the fn form a chain, so do the fn(d), and because E is a CPO, it has a least upper bound that
is necessarily less than the upper bound g(d):

⇒ ∀d ∈ D.(
⊔
n∈ω

fn(d)) v g(d)

⇐⇒ ∀d ∈ D(
⊔
n∈ω

fn)(d) v g(d)

⇐⇒
⊔
n∈ω

fn v g

Therefore, D ⇒ E is a CPO under the pointwise ordering.

10 Back to while

It’s now time to unify our dual understanding of the denotation of while as both a limit and a fixed point.
We previously defined the denotation of while as both:

C[[while b do c]] = fix(F )
= limit of Fn(⊥)
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However, we did not know how to define the fix operator over the range of F , nor did we have a definition
for the least fixed point of F to take as its limit. CPOs have given us the machinery to handle these
definitions now.

We assert that:

C[[while b do c]] =
⊔
n∈ω

Fn(⊥)

As an example to give us confidence that this is the correct definition, we see that:

C[[while true do skip]] =
⊔
n∈ω

Fn(⊥)

= ⊥Σ→Σ⊥

= λσ ∈ Σ.⊥

As we begin to construct a proof that this denotation is correct, we want to show that this limit, or LUB,
is a least fixed point of F . That is, we want to show that⊔

n∈ω

Fn(⊥)

is the least solution to

x = F (x)

This will not be true for arbitrary F ! We need F to be both monotonic and continuous.
Consider a non-monotonic F :

F (x) = if x = ⊥ then 1
else if x = 1 then ⊥
else if x = 0 then 0

Although 0 is clearly a fixed point of this F , Fn(⊥) is not a chain (the elements cycle between ⊥ and 1),
and so we cannot take the LUB of it. Monotonicity would avoid this problem.

Monotonicity guarantees that the elements Fn(⊥) are a chain and hence that we can find a LUB. But it
doesn’t mean we have a fixed point. Consider a monotonic but non-continuous F defined over the pointed
CPO (R ∪ {−∞,∞},≤):

F (x) = if x < 0 then tan−1(x) else 1

The least fixed point of this F is 1. However,

F 1(⊥) = tan−1(−∞) = −π

2
F 2(⊥) = tan−1(−π

2
) = −1

F 2(⊥) = tan−1(−1) ≈ −0.78

For x < 0, F (x) > x and F (x) < 0 : Fn(⊥) is a chain that approaches 0 arbitrarily closely: its LUB is 0.
But F (0) = 1, so the LUB is not a fixed point! The least fixed point of this monotonic function is actually
1 = F (1). The problem with this function F is that it is not continuous at 0. In general, we will look for
some form of continuity in F for fix to guarantee that the LUB formula gives us a (least) fixed point.
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11 Monotonicity and Continuity

Definition: Let (D,v) be a cpo, F : D → D a function. F is monotonic if

∀x, y ∈ D x v y → F (x) v F (y).

Claim: If (D,v,⊥) is a pointed cpo and F : D → D is monotonic then the elements Fn(⊥) form an
increasing chain in D:

⊥v F (⊥) v F 2(⊥) v . . .

Proof: Since ⊥ is the least element of D, we have

⊥v F (⊥).

Monotonicity of F gives

∀n ∈ ω Fn(⊥) v Fn+1(⊥) ⇒ Fn+1(⊥) v Fn+2(⊥).

The result follows by induction.

Notice that if F : D → D is monotonic and x0 v x1 v x2 v . . . is a chain in D, then F (x0) v F (x1) v
F (x2) v . . . is also a chain in D. This permits the following definition.

Definition: Let (D,v) be a cpo, F : D → D a monotonic function. F is continuous if for every chain

x0 v x1 v x2 v . . .

in D, F preserves the LUB operator: ⊔
n∈ω

F (xn) = F (
⊔
n∈ω

xn).

12 The Fixed Point Theorem

We will now show that the properties of monotonicity and continuity allow us to compute the least fixed
point as desired.

Claim: Let (D,v) be a cpo, and let F : D → D be a monotonic continuous function. Then
⊔

n∈ω Fn(⊥)
is a fixed point of F .

Proof: By continuity of F ,
F (

⊔
n∈ω

Fn(⊥)) =
⊔
n∈ω

F (Fn(⊥))

Applying F ,
=

⊔
n∈ω

Fn+1(⊥)

Reindexing,
=

⊔
n=1,2,...

Fn(⊥)

By definition of ⊥,
= ⊥ t

⊔
n=1,2,...

Fn(⊥)

And, finally, absorbing the join with ⊥ into the big join,

=
⊔
n∈ω

Fn(⊥)
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We now know that monotonicity and continuity guarantee that
⊔

n∈ω Fn(⊥) is a fixed point of F . We
also want

⊔
n∈ω Fn(⊥) to be the least fixed point of F . To show this, we must prove that y = F (y) ⇒⊔

n∈ω Fn(⊥) v y. We can actually prove something even stronger.

Definition: Let (D,v) be a cpo, F : D → D a function. x ∈ D is a prefixed point of F if F (x) v x.

Notice that every fixed point of F is also a prefixed point. As a consequence, if a fixed point of F is the
least prefixed point of F, it is also the least fixed point of F.

Claim: Let (D,v,⊥) be a pointed cpo. For any monotonic continuous function, F : D → D,
⊔

n∈ω Fn is
the least prefixed point of F .

Proof: Suppose y is a prefixed point of F . By definition of ⊥,

⊥ v y

Taking F of both sides,
F (⊥) v F (y) v y

Inductively, for all n ≥ 0,
Fn(⊥) v y

Because y is an upper bound for all the Fn(⊥), it must be at least as large as their least upper bound:⊔
n∈ω

Fn(⊥) v y

We have now proven:

The Fixed Point Theorem: Let (D,v,⊥) be a pointed cpo. For any monotonic continuous function,
F : D → D,

⊔
n∈ω Fn is the least fixed point of F .

13 An instance of the FPT

We have actually encountered an instance of the fixed-point theorem before. Recall lecture 6, when we
defined the set of all elements derivable in some rule system to be the least fixed point of the rule operator,
R. Our proof in that case was an instantiation of the fixed point theorem on the CPO consisting of all
subsets of a set, ordered by set inclusion:

R = F

∅ = ⊥

⋃
=

⊔
⊆=v

The tricky part of the earlier proof corresponded to showing that R is a continuous operator, which was true
because we only allow inference rules with a finite number of premises.
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