
CS611 Lecture 14 Exceptions and Continuations 29 September, 2004
Scribe: Jonathan Kaldor, Mike Jennings Lecturer: Andrew Myers

1 Introduction

In this lecture we discuss:

• State

• setjmp, longjmp, callcc, and throw

• Exceptions

2 State

In the previous lecture we introduced Continuation Passing Style (CPS ). For the translation of an expression
we used the following notation:

[[e]]ρk

Semantically, this means that we send the result of the evaluation of e in environment ρ to the continuation
k, where e is an expression, ρ is the naming context, and k is the control context.

In order to have references with CPS, we need to add state, σ, which will take a location and return a
value. Intuitively, state is threaded throughout computation and must be passed to the continuation, so we
model the continuation as a function taking both value and state:

k = λv.λσ...

Translation is denoted as:

[[e]]ρkσ

We have the following functions, which we introduced when we first discussed references:

update : (σ, l, v) → σ′

lookup : (σ, l) → v

malloc : σ → (l, σ′)

The new translations are:

[[ref e]]ρk = [[e]]ρ(λv.λσ. let (l, σ′) = malloc(σ) in k (LOC l) (update σ′ l v))

where LOC = λl.(4, l) serves to tag locations, in the same way as the bool, integer, tuple, and function
tags we saw previously. We will use corresponding functions BOOL, INT, etc., which in conjunction with
the tag-checking functions check-bool, check-int effectively abstract over whether we are doing tagging and
checking.

[[! e]]ρk = [[e]]ρ(check-loc(λl.λσ′.k(lookup σ′ l)σ′))

[[e1 := e2]]ρk = [[e1]]ρ(check-loc(λl.λσ.[[e2]]ρ(λv.λσ′.k(UNIT 0)(update σ′ l v))σ))

It is important to note that, though we have introduced state, we do not need new translation rules for
the expressions we considered before because of η-equivalence. For example:

[[x]]ρk = λσ.k(ρ x)σ =η k(ρ x)

1



3 setjmp and longjmp

setjmp is a C function which takes a pointer to a buffer. Its operation is to save the state of all registers
(including the program counter) into the specified buffer and return 0. longjmp, also a C function, takes as
an argument a pointer to a buffer (which is presumed to be a buffer which has already been filled with a
previous call to setjmp) and a value. When invoked, it restores all of the registers to the values saved in the
buffer and returns the value passed in to the point in the program where setjmp was called (in effect, the
program resumes executing right where setjmp was called, except the call will return the value passed in to
longjmp). These functions can be used for error handling. setjmp is called before code that may result in
an error. If an error occurs in computation, longjmp is called in order to restore initial state and handle the
error. For instance:

if (setjmp(&jmpbuf))
// error handling code goes here

else
do computation();
// if error occurs in compute(), call
// longjmp(jmpbuf, e), where e is the error code

These functions can be translated using continuations into:

[[setjmp e]]ρk =[[e]]ρ(check-loc (λl.λσ.k(INT 0)(update σ l (CONTk))))
[[longjmp e e′]]ρk =[[e]]ρ(check-loc (λl. [[e]]ρ(check-loc (λl. [[e′]]ρ

(λv. λσ. check-cont (lookup σl)(λk′. k′ v σ))))))

The translation of setjmp stores a continuation at a new location, while the translation of longjmp restores
a continuation from a program location. This is roughly equivalent to restoring the registers and program
state of the executing program.

4 Continuations in some programming languages

4.1 SML/NJ

The basis library of SML/NJ includes several functions designed to work with continuations. These functions
are stored in the module SMLofNJ.Cont and include:

throw : α cont → α → β

callcc : (α cont → α) → α

The expression throw c v passes v to the continuation c, while callcc f invokes f and passes it the current
continuation. The semantics for these two expressions are as follows:

[[callcc e]]ρk = [[e]]ρ(check-fun (λf. f(CONT k) k))

[[throw ec ev]]ρk = [[ec]]ρ(check-cont(λk′. [[ev]]ρ(λv. k′ v)))

Note: k is not needed in the second translation because throw doesn’t actually return control to its
context. This also explains why the type definition of throw specifies that the call returns an arbitrary type
β, since it doesn’t actually return a value at all

An example of using callcc and throw for exception handling is below:

2



open SMLofNJ.Cont;

fun processList’ itemList eHandler let
val listlen = length itemList

in
(* If the list is of zero length, we can’t process it.
* Throw an exception to our error handler *)

if listlen = 0 then
throw eHandler 42

else
(* Do some processing on the list here *)

end

fun processList(itemList) if (callcc (processList’ itemList)) = 42
then (* Try to handle the error somewhat gracefully *)
else (* Success! Continue as normal *)

4.2 Scheme

The language Scheme also includes support for explicit continuations. Using cwcc, the current continuation
is turned into a function that can be called directly, but when called it will never return (as expected, given
that it is equivalent to restoring the continuation)

4.3 Threads

Concurrent ML (CML) implements threads as continuations. Each thread has access to a scheduler contin-
uation, which when invoked switched to another scheduled continuation.

Aside: this speaks to the difficulty of implementing continuations, since threading can be implemented
using continuations and it is nontrivial to implement threading correctly.

5 Exceptions

Exceptions are another modern language feature which can be explained (and implemented) using continu-
ations. Exceptions are useful for error handling within applications, and for conveniently returning results
for unusual cases without cluttering up the “main-line” code.

5.1 Termination semantics

Most languages supporting exceptions support termination-style exceptions, in which an exception terminates
the computation in which it occurs. Usually there are constructs similar to the following:

• raise s e — throws/raises/signals an exception s with value e

• try e1 catch (s x) e2 — Attempt to execute e1. If an exception s is raised with value x, then execute
e2.

Handling an exception is similar to setjmp and longjmp from above, except that we need to be able to
look up the continuation (if any) that can handle a raised exception. To accomplish this, we create a new
handling environment h : exceptionName → continuation and pass that to our translation functions along
with ρ and k. One other notable distinction is that the handling environment applies where a given function
is used, not where it is lexically defined. These considerations lead to the following semantic translations:

3



[[raise s e]]ρkh =[[e]]ρ(λv. (lookup-handler h s)v)h
[[try e1 catch (s x) e2]]ρkh =[[e1]]ρk(extend-handler h s (λv. [[e2]](extend ρ x v) k h))

[[λx. e]]ρkh =k(λv. λk′. λh′. [[e]](extend ρ x v)k′h′)
[[e1 e2]]ρkh =[[e1]]ρ(check-fun(λf. [[e2]]ρ(λv. f v k h)))

The semantics for exceptions is very similar to the semantics for dynamic scoping, since in both cases
the meanings of objects in the language (variables in the case of dynamic scoping, and handlers in the
case of exceptions) depend on where they are used in the run-time environment and not just in the lexical
environment. In particular, the translation of a function expression is a function that explicitly takes a
handler as a dynamic argument. In fact, if a language has dynamic scoping and first-class continuations,
an exception handling mechanism can be encoded by simply storing continuations into variables that record
the location of the appropriate exception handler.

We can extend this translation to explain other exception mechanisms such as try. . . finally, an exercise
left to the reader.

5.2 Resumption semantics

An alternate model is exceptions that permit the computation in which the exception occurred to be resumed
after the exception is handled. For example, operating system interrupts have roughly this behavior. To
allow resumption, the handler must receive a continuation to be resumed. In fact, the handler becomes a
essentially a function that is called from the point where the exception is raised:

[[interrupt s e]]ρkh =[[e]]ρ(λv. h s v k h)
[[try e1 trap (s x) e2]]ρkh =[[e1]]ρk(extend-handler h s (λv. λk′. λh′. [[e2]]ρk′h′))

This semantics exposes some interesting semantic issues. For example, in the interrupt (“trap”) handler,
the code e2 uses the handler environment h′ explicitly passed up from the interrupt, rather than the lexical
handler environment h. This means that exceptions raised in the handler will be sent back down into code
that raised the exception.

4


