
CS611 Lecture 13 CPS conversion and control 27 September, 2004
Scribe: Ian Kash, Yee Jiun Song Lecturer: Andrew Myers

Today’s notes cover:

• Continuation-passing style (CPS)

• CPS semantics

• CPS conversion

• uML error checking

1 Continuation-passing style

Direct semantics have a number of problems including:

• The control structure is implicitly preserved.

• Constructions like goto and exceptions are very hard to describe exactly.

• They don’t really model low-level code and miss some important insights about compilation.

We want a semantics with no evaluation context and no implicit control structures. The solution is
continuation-passing style.

Consider the statement if x < 0 then x else x + 1. We can think of this as (if [·] then x else x + 1)[x < 0],
which we can represent very naturally as (λy. .if y then x else x + 1)(x < 0). We call this function a
continuation. Intuitively it is the place to send the result of the current computation (x < 0) in order to
continue the computation.

2 CPS Semantics

Our grammar for the lambda calculus was:

e ::= x | λx. e0 | e0 e1

Our grammar for the CPS lambda calculus will be:

e ::= x | λx1 . . . xn. s | halt

s ::= e0 e1 . . . en

Some things to note:

• We will only actually need n = 1 and n = 2

• All expressions are values (i.e. there are no subexpressions)

• An application is not an expression

The small step semantics for this has a single rule: (λxi. s)ei −→ s{ei/xi}. The final configuration has
the form halt e. We do not need any evaluation contexts because all expressions are values.

The big step semantics is also quite simple, with only two rules:
s{ei/xi} ⇓ v

(λxi. s)ei ⇓ v and halt v ⇓ v. The
resulting proof tree will not be very tree-like. In fact since each rule has 0 or 1 arguments, it will basically be
a stack in which each level of the stack is a step in the small step semantics. This allows for a much simpler
interpreter because it can work in a straight line rather than having to make multiple recursive calls. Thus
this provides us with a lower-level model of computation.

1

3 CPS Conversion

To show that we haven’t lost any expressive power in going to this simpler calculus, we convert the lambda
calculus to the CPS lambda calculus. Our conversions will look like [[e]]k where e is an expresion in the
lambda calculus and k is a continuation of the form λv. .s. We want this to satisfy the contract that [[e]]k
should send the result of e to k. Then our translation of a program e will just be [[e]]halt. We want our
translation to satisfy e −→∗

λ v. ⇔ [[e]]halt −→∗
CPS v′ such that if v is a primitive value, v = v′. For this

purpose divergence is a primitive value, so if one diverges the other should too (i.e e ⇑λ⇔ . [[e]]halt ⇑CPS).
Our translation will be (adding numbers as a primitive value):

[[n]]k = kn

[[x]]k = kx

[[λx. e]]k = k(λx. λk′. [[e]]k′)
[[e0 e1]]k = [[e0]](λf. [[e1]](λv. fvk))

Basically a function is translated into a new function that also takes a “return address” and an applica-
tion supplies that function with both the value and the return address. Now, let’s see an example of how
this works.

In plain lambda calculus, we have:

(λx. (λy. x))1 → λy. 1

The same example, in CPS:

[[(λx. (λy. x))1]] halt

⇓ [[λx. (λy. x)]](λf. [[1]](λv. (fv halt)))
⇓ (λf. (λv. fv halt)1)(λxk′. [[λy. x]]k′)
⇓ (λf. (λv. fv halt)1)(λxk′. k′(λyk′′. k′′x))
⇓ (λv. (λxk′. k′(λyk′′. k′′x)v halt))1
⇓ (λxk′. k′(λyk′′. k′′x))1 halt

⇓ halt (λyk′′. k′′1)
= [[λy. 1]]halt

Continuation semantics is also known as CPS semantics or standard semantics.

4 Error Checking

Now let us use CPS semantics to augment our previously defined uML language translation so that it sup-
ports error checking.

[[e]]ρk : The contract is that we will send the result of evaluating e in the naming environment ρ to the
continuation k. In addition, we want to be able to catch errors that may occur during the evaluation. We
create the following type tags to keep track of types:

boolean : 0
integers : 1

2

tuples : 2
f unctions : 3

Using these type tags, we can now define rules for error checking. We begin with rules for translating
values:

V[[b]]ρ = (0, b)
V[[n]]ρ = (1, n)

V[[(v1...vn)]]ρ = (2, (V[[v1]], ...V[[vn]]))
V[[λx. e]]ρ = (3, λxk. [[e]]ρk)

[[x]]ρk = k(ρ“x′′)
[[v]]ρk = k(V[[v]]ρ)

[[e0e1]]ρk = [[e0]](λp. let(tag, f) = p in if t! = 3 then error else [[e1]]ρ(λv. fvk))

We can simplify this by defining a helper function check-fn:

check-fn = λpk. let(t, f) = p in if t! = 3 then error else kf

Now,

[[e0 e1]]ρk = [[e0]]ρ(λp. check-fn p(λf. [[e1]]ρ(λv. fvk)))

Similarly,

[[if e0 then e1 else e2]]ρk = [[e0]]ρ(λp. check-bool p(λb. if b then [[e1]]ρk else [[e2]]ρk))
[[let x = e1 in e2]]ρk = [[e1]]ρ(λp. [[e2]] extend(ρ, “x′′, p)k)

[[(e0, ... , en)]]ρk = [[e0]]ρ(λx0. [[e1]]ρ(λx1. ...[[en]]ρ(λxn. k(2, (x0, ... , xn)))))
[[#n e]]ρk = [[e]]ρ(λp. check-tup p(λt. k(#n t)))

3

