
CS611 Lecture 12 State-passing and mutable variables 24 September, 2004
Scribe: Yejin Choi, Krzysztof Ostrowski Lecturer: Andrew Myers

1 State-passing style translations

In the previous class we extended our untyped functional language uML with ML-style references to memory
locations and described a structural operational semantics for this extension1.

e ::= n | x | let x = e1 in e2 | λx.e | e1e2 | true | false | (e1, ..., en) | #n e | if e1 then e2 else e3 | ...

... | ref e |!e | e1 := e2 | unit

Since the new features introduced side-effects to the language, we decided to extend our evaluation relation
with a new component of state to take this factor into account. However, dealing with state explicitly as a
context in which evaluation is made is not the only way to describe the behavior of a language with such
features. In this class we learn how to translate2 programs in the new language back into the pure uML by
means of passing state as an argument to and a result of our evaluation function.

The new translation function maps syntactical objects representing expressions into functions that, given
naming environment and a state (represented as a function from locations3 to values) return a pair consisting
of the value of the evaluated expression and a new state that reflects all the side effects.

[[e]] = λρ.λσ.(v, σ′) − evaluate e in state σ and environment ρ, return v and a new state σ′

In the literature this sort of technique is sometimes called a state-passing style.
As a side note, the language we are describing here is roughly equivalent to ML. The main difference

is in that ML is typed; types, however, do not affect the execution, but rather serve merely as a means of
checking of program correctness.

2 Rules for translation of uML! into uML

Translation of integers and variables is straightforward: they do not affect the state.

[[n]]ρσ = (n, σ)
[[x]]ρσ = (ρ“x”, σ)

During the evaluation of the if expression, the branching condition may have side effects, hence the need
to pass the updated state to the appropriate subexpression.

[[if e0 then e1 else e2]]ρσ = let p = [[e0]]ρσ in let b = #1 p in let σ′ = #2 p in if b then [[e1]]ρσ′ else [[e2]]ρσ′

Since the new state and value are passed back as a pair, we needed to extract them first. For brevity, we
now extend let with a new pattern-matching style notation and rewrite the above as the following.

[[if e0 then e1 else e2]]ρσ = let (b, σ′) = [[e0]]ρσ in if b then [[e1]]ρσ′ else [[e2]]ρσ′

We will use this notation throughout the lecture.
The above illustrates the mechanics of our translation, handling tuples, indexing etc. is similar. We now

turn to describing the semantics of the newly introduced programming constructs.
1Note that we simplified uML a little bit, omitting multiargument functions and letrec. This is for brevity and simplicity,

they would not introduce anything new beyond what is presented here.
2We rely on the fact that the semantics of uML has already been described via translating it into the lambda calculus,

hence showing how to translate uML! into uML is enough to specify the behavior of programs in uML!.
3How exactly locations are represented is an implementation detail, we may assume e.g. that locations are integer numbers.

1

The expression ref e stores the value of e in some newly allocated location and returns that location,
together with an updated state, as a result. We model this as a two-step process via a pair of semantic
functions, malloc : (Loc4 → Val) → Loc× (Loc → Val), which returns a new, unused location and a modified
state where this location is no longer free, and update : (Loc → Val) × Loc × Val → (Loc → Val), which
updates a given state by putting a specified value under a specified location (and again returns the resulting
state). Formally, we guarantee that if malloc σ = (l, σ′) then l /∈ dom(σ) and that update σ l v = σ[l → v].

[[ref e]]ρσ = let (v, σ′) = [[e]]ρσ in let (l, σ′′) = malloc σ′ in (l, update σ′′ l v)

Expression !e retrieves a value stored under a location represented by e. We again introduce a new
semantic function, lookup : (Loc → Val) × Loc → Val that does the job. Notice that we lookup the value
from the new state, in case the evaluation of e altered the content at the location specified e itself.

[[!e]]ρσ = let (l, σ′) = [[e]]ρσ in (lookup σ′ l, σ′)

We don’t really care how the functions lookup, update are implemented as long as they satisfy the following
equational specification:

lookup(update σ l v) l = v

lookup(update σ l v) l′ = lookup σ l′ for l 6= l′

update(update σ l v) l v′) = update σ l v′

update(update σ l v) l′ v′) = update (update σ l′ v′) l v for l 6= l′

(malloc σ) = (l, σ′)
where (allocated σ′ l) ∧ ¬(allocated σ l)

∧ (∀l′ . (allocated σ l′) ⇒ lookup σ l′ = lookup σ′ l′)
(allocated σ0 l) = false where σ0 is the initial memory

This specification doesn’t dictate a representation of locations or of states, but the equations given allow
us to prove anything we would want, to by substituting equals for equals. For example, we might represent
locations as integers, and a state as a pair (f, n) where f(2) gives the value at location 2. The number n
represents a location above which all locations are unallocated, so we’d have

malloc (f, n) = (n, (f, n + 1))
allocated (f, n) m = (m < n)

lookup (f, n) m = f(m)
update (f, n) m v = (λm′. if m = m′ then v else f(m′), n)

σ0 = (λm. 0, 0)

But this is just one possible implementation. If we wanted automatic garbage collection, we’d need a more
complicated representation of states.

In translating assignment, we need to decide about the order in which expressions are evaluated, we
assume a left-to-right evaluation, i.e., the location is calculated first, hence the value to be assigned is
evaluated in the state affected by the evaluation of the location. Note that the returned value is unit, this is
to stress the fact that the primary purpose of using the assignment is for its side-effect.

[[e1 := e2]]ρσ = let (l, σ′) = [[e1]]ρσ in let (v, σ′′) = [[e2]]ρσ′ in (unit, update σ′′ l v)

So much for the new features. We might expect that the translation of lambda expression and application
would be similar to what we have seen for the other parts of the old langague, hence we might be tempted
to write the following, with update env being a function updating the environment accordingly.

4Here Loc and Val represent the sets of locations and values, respectively. According to our earlier definition, the state is a
mapping from locations to values, hence it is of type Loc→ Val.

2

[[λx.e]]ρσ = (λy.[[e]](update env ρ “x” y)σ, σ)

The problem with such a definition is that it would cause the function to evaluate its body in the state
from the time when lambda expression was introduced and assigned to a variable or stored in memory, not
at the time when it is being applied. This makes us realize that a function needs to take an additional
argument, the current state at the time when it is being applied, and evaluate its body in this state. Note
that even though we are passing the state in a dynamic fashion, this semantic is still static scoping, as
static and dynamic scoping are regarding the naming environment(the fuction to map names of variables to
locations) and here we are using the naming environment at the definition time of the function.

[[λx.e]]ρσ = (λy.λσ′.[[e]](update env ρ “x” y)σ′, σ)

When applying the function to an argument, we first evaluate the function, then evaluate the expression
in the state affected by the previous evaluation, and finally pass the resulting state together with the value
to the function for processing.

[[e1 e2]]ρσ = let (f, σ′) = [[e1]]ρσ in let (v, σ′′) = [[e2]]ρσ′ in f v σ′′

3 Implementation considerations

Historically, lazy languages didn’t have states, because the notion of state does not make much of sense in
lazy language. That is, when there is an expression whose evaluation has not been performed, the value of
such evaluation is not well defined.

Another thing to notice is that the implementation of states can be done quite efficiently. This is because
at any given moment of execution, there is only one state, and whenever the side effects of the program
alters the state, the old state is simply overwritten with the new one. That is, we can implement the state
by destructive update.

With transactions or checkpointing mechanisms, we will need to keep multiple states floating around, in
case we need to fall back to a state in the past.

4 Mutable variables

The expressions that we’ve examined so far were based on ML. In this section, we will show how we can
describe the semantics of C like language features, such as pointer and reference, by means of translation
rules. We will extend our simple language to include the following expressions.

... | e1 = e2 | &e | ∗e

Here the assignment puts the value of expression e2 into the location represented by e1 and returns the new
value at the location of e1. &e returns the location of e, and ∗e returns the value stored at location e.

Note that expressions in this language can be interpreted in two different ways depending on the context
in which they are used. An expression at the left side of an assignment operator represents a location of that
expression, whereas an expression on the right side represents its value. In order to stress this dependency
we define lvalues as terms that may appear on the left hand side of an assigntment, and rvalues as terms
that may not appear on the left hand side of an assigntment. Also, we will introduce two corresponding
translation functions, L[[·]] and R[[·]], accordingly.

Translations of numbers and variables are straightforward. The former can never act as lvalues, therefore
no corresponding translation is shown.

R[[n]]ρσ = (n, σ)

R[[x]]ρσ = (lookup σ (ρ“x”), σ)

3

L[[x]]ρσ = (ρ“x”, σ)

Note that in general, if L[[e]] is defined (and, as we have just seen, it not always is), then R[[e]] will always
be expressed simply as a lookup into the corresponding memory location, hence the following principle.

R[[e]]ρσ = let (l, σ′) = L[[e]]ρσ in (lookup σ′ l, σ′)

.
Since variables in this language represent memory locations, translation of the let expression needs to be

slightly modified, it is now going to be roughly equivalent to R[[let x = e1 in e2]]ρσ ∼= let x = ref e1 in e2 in
uML!, that is, assigning a reference.

R[[let x = e1 in e2]]ρσ = let (v, σ′) = R[[e1]]ρσ in let (l, σ′′) = malloc σ′ in R[[e2]](ρ[“x” 7→ l])(update σ′′ l v)

Assignment is almost identical as in uML!, but we need to apply the appropriate translation functions
on the two sides of the assignment operator. Also note that here the assigntment will return the value of
the assigned value, as in C.

R[[e1 = e2]]ρσ = let (l, σ′) = L[[e1]]ρσ in let (v, σ′′) = R[[e2]]ρσ′ in (v, update σ′′ l v)

Finally, the & and ∗ operators. Note that the former can never appear as a lvalue while the latter can.

R[[&e]]ρσ = L[[e]]ρσ

L[[∗e]]ρσ = R[[e]]ρσ

We also must modify functions because the formal argument of a variable is now allocated in the store:

R[[λx. e]]ρσ = λy. λσ′. let (l, σ′) = malloc σ in let σ′′ = (update σ′ l y) in R[[e]](ρ[“x” 7→ y])σ′′

R[[e0 e1]] = let (f, σ′) = R[[e1]]ρσ in let (v, σ′′) = R[[e2]]ρσ′ in fvσ′′

5 Call by reference

Some languages, such as Pascal and Ada, support a parameter-passing style in which an actual parameter
being passed to a function can be updated by that function. That is, the actual variable is passed to a
function, rather than the value in the variable. This feature can be easily modeled by translation. We add
a new kind of function and a new kind of application:

e ::= ... | λrx . e | rapp e0 e1

Here is a translation of these new features. The key idea is that we no longer need to allocate a new
variable in the function, and the application passes the lvalue of the argument.

R[[λrx. e]]ρσ = λl. λσ′.R[[e]]ρ[“x” 7→ l]σ′

R[[rapp e0 e1]] = let (f, σ′) = R[[e0]]ρσ in let (l, σ′′) = L[[e1]]ρσ′ in flσ′′

4

