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1 Introduction

The last lecture introduced the static and dynamic approaches to variable scoping. Both of these approaches
are hierarchical in the sense that variables enter and leave scope according to the program’s abstract syntax
tree (in the case of static scoping) or the tree of function calls (in dynamic scoping). This dependence on
hierarchy might prove restrictive or inflexible for writing certain kinds of programs. In such cases we might
want more fine-grained access to variables that are defined in various parts of the program.

This can be done by introducing non-hierarchical scoping structures. The idea is that a large program is
composed of a collection of software black-boxes, each of which exports resources as a set of names. In such
a scheme, the names that can be used at a certain point in the program need not necessarily come down
from above but can also come from various such black-boxes.

One issue with such a scoping scheme is the communication of names from one part of a program to
another. One way in which this has traditionally been done is by having a global namespace as in FORTRAN
or C. With a global namespace, the names of functions in source files and libraries are visible to all other
parts of the program. There are certain problems with this:

• The various parts of the program can become tightly coupled. In other words, the global namespace
approach does not enforce the modularity of the program. Replacing any particular part of the program
with an enhanced equivalent could require a lot of effort.

• Name collisions could occur since names inevitably tend to coincide.

A solution to this problem is for the language to provide a module mechanism that allows similar functions,
values, and types to be grouped together into a common context, as we shall see next.

2 Modules

A module is a collection of named things (such as values, functions, types etc.) that are somehow related to
one another. The programmer can choose which names are public (exported to other parts of the program)
and which are private (inaccessible outside the module).

There are usually two ways to access the contents of a module. The first is with the use of a selector
expression, where the name of the module is prefixed to the variable in a certain way. For instance, we write
m.x in Java and m::x in C++ to indicate a reference to name x within module m.

The second method of accessing module contents is to use an expression that brings names from a module
into scope for a section of code. For example, we can write something like with m do e, which means that x
can be used in block of code e without prefixing it with m. In ML, for instance, the command “Open List”
brings names from the module List into scope. In C++ we write “using namespace module name;” and in
Java we write “import module name;” for the similar purposes.

Another issue is whether to have modules as first class or second class objects. First class objects are
entities that can be passed to a function as an argument, bound to a variable or returned from a function. In
ML, modules are not first class objects whereas in Java, modules can be treated as first class objects using
the reflection mechanism. While first-class treatment of modules increases the flexibility of a language, it
usually requires some extra overhead at run-time.

3 Module syntax and translation to uML

We now extend uML, our simple ML-like language, to support modules. We call the new language uML+M
to denote that it supports modules. The syntax of the new language is:
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e ::= ...
| module (x1 = e1, ..., xn = en) (module definition)
| em.e (selector expression)
| with em x (bringing into scope)
| lookup-error (error)

We now want to define a translation from uML + M to uML.1 To do this, we notice that a module is
really just an environment, since it is a mapping from variables names to values. Here is a translation of the
module definition:

[[module (x1 = e1, x2 = e2, ..., xn = en)]] ρ =
λx. if x = x1 then [[e1]] ρ else

if x = x2 then [[e2]] ρ else
...
if x = xn then [[en]] ρ else
lookup-error

The above is one possible translation. Note that ρ is passed as the environment to the translation of
e1...en. This has an important consequence: variables defined within the module are not visible within the
initialization expression of other variables in the module. For instance in the above translation, we cannot
refer to any of the xi’s within any of the ei’s. Nor does it seem possible to use the resulting environment
within itself for the purpose of accessing the module variables since this leads to circularity problems.

However, we could translate module using techniques from the translation of letrec. The environment
that results after the translation should be the same that is used within the module. This can be found by
taking the fixed point of the function

λρ′. λx. if x = x1 then [[e1]] ρ′ else
if x = x2 then [[e2]] ρ′ else
...
if x = xn then [[en]] ρ′ else
lookup-error

This works fine if the ei’s are functions. However, it is not clear how to handle variables whose initialization
expressions reference one another. For instance, consider

module (x1 = x2, x2 = x1)

It is not quite clear what to do with such expressions. C++ avoids this problem by allowing functions within
a class to call any other function within the class, but initialization expressions of variables are only allowed
to refer to variables declared earlier in the class. For our purposes, we stay with the translation above.

The remainder of the translation is as follows:

[[em.x]]ρ = ([[em]]ρ) “x”
[[with em e]]ρ = [[e]](MERGE ρ ([[em]]ρ))
MERGE ρ ρ′ = λ x.let y = ρ′ x in if y = lookup-error then ρ x else y

1Actually our translation is to the target language uML+S+ lookup-error, a simple extension to uML that contains equality
operators for strings and an extra token called lookup-error which is returned when a variable name is not found in a module.
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Note that these translations are really functions of environments. That is, the translation above for
[[em.x]] can be written:

[[em.x]] = λ ρ. ([[em]] ρ) “x”

4 State

Program state refers to the ability to change the values of program variables. The languages we have studied
so far, such as λ-calculus and uML, have not had state, in the sense that once a value was bound to a variable,
it was impossible to change that value. Although state is not a necessary feature of a programming language
(e.g. λ-calculus is Turing complete but does not have a notion of state), it is a common feature of most
languages. The reason why we still use the notion of the state in our languages is quite philosophical and has
to do with our perception of the world. We tend to associate an identity with each object and differentiate
between various objects much in the same way as we differentiate between different variables. However, it
can be argued that even from the point of view of physics, identity is a myth: two electrons in the same state
are indistinguishable in all respects and there is no way to assign an identity to them. Furthermore, we can
argue that the concept of state in physics is an illusion and time is just another dimension of the universe.
So it seems that our universe, just like λ-calculus, is purely functional!

4.1 Syntax

Despite this philosophy, programmers are accustomed to the notion of program state. So, we extend uML to
include the ability to change the values of variables, and we call the new language uML!. We use a construct
called a reference cell that allows its value to be changed over time. The syntax of uML! is as follows:

e ::= ...
| ref e (create reference cell)
| !e (evaluation or dereference)
| e1 := e2 (assignment or mutation)
| unit (unit value)

Informally, the semantics of these new expressions are as follows. ref e creates a reference cell having
the initial value e. The !e expression evaluates to the current value of the reference cell that e evaluates to.
e1 := e2 assigns the value that e2 evaluates to to the reference cell that e1 evaluates to, and in our semantics
returns the value unit. (Note that other design choices could be made; for example, the assignment operator
could return the value of e2 so that expressions like e0 := e1 := e2 could be written to assign the same
value to multiple variables.)

Note that cell references are first class objects. This is more powerful than simple mutable variables as
in C. As an example, consider the following expression:

let x = ref 1 in
let y = x in

let z = ( x := 2 ) in
!y

Since y is an alias for x, dereferencing y gives us the value of x which in this case has changed from 1 to
2. The expression therefore evaluates to 2.
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4.2 Operational semantics

We now write the operational semantics for the cell reference expressions in uML!. To do this, we define a
configuration as a pair e, σ where e is an expression and σ is a function mapping locations (variable names)
to values.

e −→uML e′

e, σ −→uML! e′, σ

ref v, σ −→ l, σ′ where σ′ = σ[l 7→ v] ∧ l 6∈ domain(σ)

!l, σ −→ σ(l), σ

l := v, σ −→ unit, σ[l 7→ v]

where σ[l 7→ v] is the same function as σ except that the value mapped to location l is changed to v.
Note that these are eager evaluation rules, evaluating values from left to right. So the evaluation contexts

look like this:

E := ref[·] | ![·] | [·] := e | l := [·]
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