
CS611 Lecture 10 Semantics and scope rules 20 September 2004
Scribe: Bryan Silverthorn, Yogeshwer Sharma Lecturer: Andrew Myers

1 Finishing the translation of uML

In the previous lecture we saw a new language, an extension of the λ-calculus called uML. We also saw its
reduction rules and evaluation contexts, and began to define a translation from uML to the λ-calculus with
call by value semantics (λ-CBV). Today, we will consider the translation of the tuple, let and letrec constructs
of uML, relating them to the broader topics of recursion, error checking, and strong typing. Finally, we will
introduce the topic of variable scope in the context of the lambda calculus, and define translations to λ-CBV
for the two most common scope rules.

2 Translation from uML to λ-CBV

Let us consider the translation of tuples first. We represent tuples as lists which use the CONS, LEFT, and
RIGHT functions as their “interface”. Define

CONS , λx.λy.λf.(f x y)
LEFT , λp.(p λx.λy.x)

RIGHT , λp.(p λx.λy.y)

CONS is a function for constructing lists by adding one element at the head of the list. The LEFT
construct extracts the head of the list, while RIGHT chops off the head. Now, we can define the translation
from tuples to λ-CBV as follows:

[[()]] , NULL

[[(e1, e2, . . . , en)]] , CONS [[e1]] [[(e2, . . . , en)]]
[[#1 e]] , LEFT [[e]]
[[#n e]] , [[#n− 1 (RIGHT [[e]])]]

For the case of the let expression:

[[let x = e1 in e2]] = (λx.[[e2]])[[e1]]

Now comes the last of our uML constructs, letrec. This construct allows us to define multiple mutually
recursive functions, each of which is able to make calls to itself and to the other functions defined in the
same letrec block. We will consider the case when only one function is defined in the letrec. Let us define
another construct for the naming of recursive functionss: (rec f.e) defines a function named f whose body
e can refer to itself. If we take the rec construct for granted, we have the following translation.

[[letrec f1 = λx1.e1 in e2]] = (λf1.[[e2]])(rec f1.λx1.[[e1]])

And the rec construct can be converted to λ-CBV using the Y-combinator, which we have seen previously.
We make the term λf.e from the values in (rec f.e) and get Y (λf.e) as the definition of rec. So the full
version of the translation above becomes:

[[letrec f1 = λx1.e1 in e2]] = (λf1.[[e2]])(Y(λf1.λx1.e1))

3 Soundness of the translation

We have defined the translation from uML to λ-CBV. Now a new question arises: is the translation sound
and complete? The question of “soundness” asks “does any evaluation/reduction in the target language

1



correspond to an equivalent evaluation/reduction in the source language?” What is the answer to this
question with our translation?

Consider the expression if 0 then 1 else 2. This will not evaluate to anything in uML (because 0 is
not a boolean value), but what happens to it in λ-CBV? 0 has the same representation as FALSE in the
target language, so it will evaluate to 2 without any problems. This example suggests that there exists some
expression e such that some evaluation of [[e]] in the target language does not correspond to an evaluation of
e in the source language. Clearly the answer to our original question is “no”: our translation is not sound.

How to approach this problem? There are several approaches. We can leave the load of writing the
correct programs on the programmer and hence ignore the problem. But this does not seem to be a good
idea: consider a program which does not make sense in the programming language, and which therefore
does something unexpected after translation to the machine-language—where it did “make sense” (at the
machine level). Prominent examples of languages which take this approach are C and C++.

Another approach is to augment our translation so that an “incorrect” expression cannot be translated
to a “correct” expression (ie, one that evalutes successfully at runtime). In the augmented translation, we
introduce another construct called error which signifies that there is no further evaluation possible.

Now we introduce the idea of types (although very primitive) which take care of some “incorrect” trans-
lations like above. We keep a tag with each type of value, specify 0 for booleans, 1 for integers, 2 for tuples
and 3 for functions, and we check that we are getting the right kind of values where they are needed (for
example, we check that we have a boolean conditional in an if-then-else construct).

Call the new translation E [[e]]. The translation becomes,

E [[true]] = [[(0, true)]]
E [[false]] = [[(0, false)]]
E [[n]] = [[(1, n)]]

E [[(e1, e2, . . . , en)]] = [[(2, (e1, e2, . . . , en))]]
E [[λx.e]] = [[(3, λx.e)]]

In such case, the translation of general terms will be something like this.

E [[if e0 then e1 else e2]]
= [[if FIRST(e0) 6= 0 then error else (SECOND(e0) λz.e1 λz.e2)]]

The motivation behind introducing the new construct error is that if the source program should become
stuck somewhere during its execution, then the translation of that program will evaluate to error. More
concretely,

e →∗ e′ ∧ 6 ∃ e′′.e′ → e′′ ⇒ [[e]] →∗ error

Total adherence to source language semantics in the program translation, verified at compile time, run-
time, or both, is strong typing. Both strongly typed and weakly typed languages are used modern program-
ming. For example, ML and Scheme are strongly typed languages while C, C++ and Pascal are not.

The translation from e to [[e]] is compilation and the process of reducing [[e]] and obtaining a value is
execution. Compilation, which happens once, is considered a static process, whereas execution is dynamic.

4 Variable scoping rules

Until now we could look at a program as written and immediately determine where any variable was bound.
This was possible because the λ-calculus uses block-structured static scope (also called lexical scope).

Recall that the scope of a variable is where that variable can be mentioned and used. In block-structured
static scope, the places where a variable can be used are determined by the lexical structure of the program,
and they are determined by the nesting (block) structure of the program itself. However, in many languages,
such as ML, holes in scope occur when a variable is defined whose name is already in scope, effectively
shadowing that variable inside the “hole” created by the scope of the new variable. Because holes in scope
can lead to programmer errors, some languages, such as Java and CLU, prevent some of them.

2



The usual alternative to static (lexical) scope is dynamic scope, in which a variable is bound to the most
recent dynamic binding of that variable. Scoping rules can change the meaning of a program, such as the
following:

let delta = 2 in
let bump = λx.x+delta in

let delta = 1 in
bump(2)

In ML, which uses lexical scoping, the block above evaluates to 4:

delta is bound to 2.
→ bump is set to λx.x+delta.

Since delta is statically bound, this is immediately equivalent to λx.x + 2
(it is a closure—it is paired with the values of its variables).

→ delta is bound to 1. Nested referrals to delta will use the new value.
→ bump(2) is evaluated using the environment in which bump was defined.

That is, bump is evaluated with delta equal to 2. We get 2 + 2 = 4.

If the block is evaluated using dynamic scoping, it evaluates to 3:

delta is bound to 2.
→ bump is set to λx.x+delta.

The value of delta in bump may change—it is not a closure.
→ delta is bound to 1.
→ bump(2) is evaluated using the current environment, where delta is 1.

That is, bump is evaluated using the global environment. We get 2 + 1 = 3.

Dynamically scoped languages are quite common, and include many interpreted scripting languages.
Examples of languages with dynamic scoping are (in roughly chronological order): early versions of LISP,
APL, PostScript, TeX, Perl, and Python. Dynamic scoping does have some advantages:

• Certain language features are easier to implement.

• It becomes possible to extend almost any piece of code by “overriding” the values of variables that are
used internally by that piece.

These advantages, however, each come with a price:

• Since it is impossible to determine statically what variables will be accessible at a particular point in a
program, the compiler cannot determine where to find the correct value of a variable, necessitating a
more expensive variable lookup mechanism. With static scoping, variable accesses can be implemented
more efficiently, as array accesses.

• Implicit extensibility makes it very difficult to keep code modular: the true interface of any block of
code becomes the entire set of variables used by that block.

Why might dynamic scoping be easier to implement? We can demonstrate the difference by defining
translations for each of the two scoping rules. Our translation will convert an expression e into a function
that expects an environment ρ, a mapping from identifiers (x) to values (ρ(“x”)). Note that we bypass, for
the evaluation of the expression e, the lexically-scoped variable lookup of the λ-calculus. The translation for
static scoping is as follows:

[[x]] = λρ.ρ(“x”)
[[n]] = λρ.n

[[e1 e2]]ρ = ([[e1]]ρ)([[e2]]ρ)
[[λx.e]]ρ = λy.[[e]](EXTEND ρ “x” y)

3



Where EXTEND , λp.λx.λv.λx′.if x′ = x then v else ρ(x′). And the translation for dynamic scoping
is:

[[λx.e]]ρlex = λy.λρdyn.[[e]](EXTEND ρdyn “x” y) (throw out lexical environment)
[[e1 e2]]ρ = ([[e1]]ρ)([[e2]]ρ)ρ

Using the same definition of EXTEND, above. Notice that the translation of a function for static
scoping contains two components: the body of the function [[e]] and the lexical environment ρ. This pair
of components together form a closure. By contrast, in dynamic scoping the translated function does not
record the lexical environment: closures are not needed.

4


