
CS611 Lecture 9 Semantics via Translation 17 September, 2004
Scribe: Dan Sheldon, Maksim Orlovich Lecturer: Andrew Myers

1 Introduction

The goal is to study basic PL features, using the semantic techniques we know:

• Small-step operational semantics

• Big-step operational semantics (also known as “natural” semantics)

• Translation

We will mostly use small-step semantics and translation.

2 Translation

For translation, we map well-formed programs in the original language, into items in the meaning space.
These items may be

• programs in an another language (definitional translation)

• mathematical objects (denotational semantics); an example is taking λx : int.x to {0 → 0, 1 → 1, . . .}

Because they define the meaning of a program, these translations are also known as meaning functions
or semantic functions.

2.1 Translating CBN λ-calculus into CBV λ-calculus

The call-by-name (lazy) version of λ-calculus was defined with the following evaluation context:

E[•] ::= [•] | [•] e

and with the following reduction:
(λx.e1) e2 −→ e1{e2/x}

The call-by-value (eager) version of λ-calculus was defined with the following evaluation context:

E[•] ::= [•] | [•] e1 | v [•]

and with the following reduction:
(λx.e1) v −→ e1{v/x}

1

Relevant notation: [[x]] uses the semantic brackets. These denote a function applied to the syntax of
the original language. The bracket may ocassionally be annotated to avoid ambiguity or confusion between
multiple functions: either as [[e]]cbn or C[[e]]

To translate from CBN lambda calculus to CBV lambda calculus we define the semantic function [[[•]]]
as follows by induction on the syntactic structure:

[[x]] = x ID

[[λx.e]] = λx.[[e]]
[[e1 e2]] = [[e1]](λz.[[e2]]),where z /∈ FV ([[e2]])

The idea here is to wrap the parameters to functions inside λ−abstractions to delay their evaluation, and
then to finally pass in a dummy parameter to expand them out.

For an example, recall that we defined:

TRUE , λx.λy.x

FALSE , λx.λy.y

IF λx.λy.λz.(xyz)

There is a problem with this construction in CBV λ−calculus: IF b e1 e2 evaluates both e1 and e2. Perhaps
the conversion above can be used to fix these to lazily evaluate the arms?

[[TRUE]] = λx.[[λy.x]]
= λx.λy.[[x]]
= λx.λy.(x ID)

[[FALSE]] = λx.λy.(y ID)

[[IF]] = [[λx.λy.λz.xyz]]
= λx.λy.λz.[[(xy)z]]
= λx.λy.λz.[[xy]](λd.[[z]])
= λx.λy.λz.[[xy]](λd.z ID)
= λx.λy.λz.[[x]](λd.[[y]])(λd.z ID)
= λx.λy.λz.(x ID)(λd.y ID)(λd.z ID)

This isn’t quite a solution to implementing lazy evaluation of IF arms inside CBV λ-calculus, as the
conversion is meant to be used only with a fully converted expression; but this will be adopted later.

2.2 Adequacy

We would like to say that meaning space is adequate to represent the source language. To get this, we need
the following situation to hold:

e -∗v source(high-level)

[[e]]
?

6

-∗v′
?

6

≈ [[v]]

-

meaning(low-level)

2

That is, if an expression e steps to v in 0 or more steps, then [[e]] must step to v′ such that v′ is equivalent
(e.g. β-equivalent) to [[v]]; and further each expression in the low-level language can be expressed in the
original language. This is formally stated as two properties: soundness and completeness

2.2.1 Soundness

[[e]] −−→
cbv

∗ v′ ⇒ ∃v.e −−→
cbn

∗ v ∧ v′ ≈ [[v]]

2.2.2 Completeness

[[e]] −−→
cbn

∗ v ⇒ ∃v′.[[e]] −−→
cbv

∗ v′ ∧ v′ ≈ [[v]]

2.2.3 Handling non-termination

The above does not list one requirement: the source and meaning forms must also agree on non-terminating
execution. We write e ⇑, read e diverges, to denote non-termination. We have e ⇑ if there exists an infinite
trace of expressions e1, e2, . . . such that e → e1 → e2 → . . . With this, there are additional conditions for
soundness:

[[e]] ⇑cbv⇒ e ⇑cbn

and completeness:
e ⇑cbn⇒ [[e]] ⇑cbv

Note that which direction is considered soundness and which completeness depends on which semantics
(the original operational semantics or the translation) is considered the ground truth.

Adequacy is the combination of soundness and completeness.

2.2.4 Caveats

We have defined adequacy to help show the correctness of translations. But there are a few caveats:

1. Completeness is not enough, and may not be useful on its own. For example, consider a trivial meaning
space MS where ∀e, e −−→

MS
0 and ∀v, v ≡ 0. Then completeness is satisfied for any translation, but

conveys no notion of adequacy.

2. Soundness may be hard to show in general. Typically, we show agreement on divergence and base
values.

3. We’ll see that we need types to show soundness.

2.3 Example: Augmented Lambda Calculus (uML)

Let’s construct an example by augmenting the λ-calculus, and defining its translation to the CBV λ-calculus.
We’ll call this language uML since it resembles ML, with the “u” standing for “untyped”.

2.3.1 Expressions

e ::= λx1 . . . xn.e | e0 . . . en | x | n | true | false

| (e1, . . . , e2) | #ne | if e0 then e1 else e2

| let x = e1 in e2

| letrec f1 = λx1e1 and . . . and fn = λxnen in e

3

2.3.2 Values

v ::= λx1 . . . xn.e | n | true | false | (v1, . . . , vn)

2.3.3 Evaluation context

E[•] ::= [•] | v0 . . . vm[•]em+2 . . . en | #n[•]
| if [•] then e1 else e2

| let x = [•] in e2

| (v1, . . . , vm, [•], em+2, . . . , en)

2.3.4 Reductions

(λx1 . . . xn.e)v1 . . . vn → e{v1/x1}{v2/x2} . . . {vn/xn}
#n(v1, . . . , vm) → vn (where 1 ≤ n ≤ m)

if true then e1 else e2 → e1

if false then e1 else e2 → e2

let x = v in e → e{v/x}
letrec . . . → to be continued

We can already see hints that types will be important for analyzing translations. For example, what
happens with the expression “if 3 then 1 else 0”? This evaluation gets stuck because 3 is a value and will
never reduce to true or false.

2.3.5 Translating uML to CBV λ-calculus

We begin to define translation rules:

[[λx1 . . . xn.e]] = λx1.λx2. . . . λxn.[[e]]
[[e0 . . . en]] = ((([[e0]][[e1]])[[e2]]) . . .)[[en]]

[[x]] = x

[[n]] = λf.λx.fnx

[[true]] = λx.λy.(x ID)
[[false]] = λx.λy.(y ID)

[[if e0 then e1 else e2]] = ([[e0]]λz.[[e1]])λz.[[e2]]

Revisiting our earlier example “if 3 then 1 else 0”, we see that its translation will evaluate in the λ-calculus.
because there is no way for a lambda-calculus term to get stuck, even if it no longer soundly represents an
evaluation in the source language. This is a disconnect that we will address later on by explicitly adding
run-time type checking to the translation.

4

