1 IMP

IMP, a simple IMPerative language, was introduced at the end of last lecture to provide a simple, and arugably more familiar, framework for the study of language semantics.

1.1 Syntax

IMP contains several different language constructs:
$\mathrm{x} \in \operatorname{Var}$
$\mathrm{a} \in \operatorname{Aexp}::=n|x| a_{1} \oplus a_{2}$ (where \oplus is an arithmetic operation)
$\mathrm{b} \in \operatorname{Bexp}::=$ true \mid false $\left|b_{1} \wedge b_{2}\right| b_{1} \vee b_{2} \mid a_{1} \odot a_{2}$ (where \odot is a comparison)
$\mathrm{c} \in \mathbf{C m d}::=\mathbf{s k i p}|x:=e| c_{1} ; c_{2} \mid$ if b then c_{1} else $c_{2} \mid$ while b do c
Constants consist of integers $n \in \mathbf{Z}$ and truth values $\mathbf{T}=\{$ true, false $\}$.

1.2 Configurations

Unlike in the λ-calculus, the storage of values in variables provides for the notion of state in IMP. We define a configuration to be the current state of evaluation:

$$
\langle c, \sigma\rangle
$$

where c is an IMP command at some stage of evaluation and σ is a store, a function $f: V a r \rightarrow \mathbf{Z}$ mapping variables to integers.
We define the initial state to be σ_{0}, a function that maps all variables to 0 , or in terms of the λ-calculus, $\lambda x .0$.

We define the final configuration, if one is reachable after zero or more steps of evaluation, to be:

$$
\langle\text { skip }, \sigma\rangle
$$

where skip reflects that no further computation is possible and σ is some final state. Running programs in IMP, therefore, consists of stepping from an initial configuration to the final configuration in terminating programs:

$$
\left\langle c, \sigma_{0}\right\rangle \rightarrow \cdots \rightarrow\langle\text { skip }, \sigma\rangle \Leftrightarrow\left\langle c, \sigma_{0}\right\rangle \rightarrow^{*}\langle\text { skip }, \sigma\rangle
$$

1.3 Small-Step Operational Semantics

We now present the small-step semantics for evaluation of arithmetic and Boolean expressions and commands in IMP. Just as with the λ-calculus, the evaluation rules are presented as inference rules, which inductively define relations consisting of the acceptable computational steps in IMP.

1.3.1 Arithmetic Expressions

Integers: $\overline{\langle n, \sigma\rangle \longrightarrow n}$
Variables: $\overline{\langle x, \sigma\rangle \longrightarrow \sigma(x)}$
Arithmetic with values: $\frac{n_{3}=n_{1} \oplus n_{2}}{\left\langle n_{1} \oplus n_{2}, \sigma\right\rangle \longrightarrow n_{3}}$
Arithmetic with expressions: $\frac{\left\langle a_{1}, \sigma\right\rangle \longrightarrow a_{1}^{\prime}}{\left\langle a_{1} \oplus a_{2}, \sigma\right\rangle \longrightarrow a_{1}^{\prime} \oplus a_{2}}$

1.3.2 Boolean Expressions

Evaluation semantics for Boolean expressions are similar to those for arithmetic expressions, and we leave their construction as an exercise.

1.3.3 Commands

Skip: This command is always the final configuration as defined before, so there is no evaluation rule for it.

Assignment:
$\overline{\langle x:=n, \sigma\rangle \longrightarrow\langle\mathbf{s k i p}, \sigma[x \rightarrow n]\rangle}$
$\frac{\langle a, \sigma\rangle \longrightarrow\left\langle a^{\prime}, \sigma\right\rangle}{\langle x:=a, \sigma\rangle \longrightarrow\left\langle x:=a^{\prime}, \sigma\right\rangle}$
Sequences:
$\left.\overline{\langle\mathbf{s k i p} ;} c_{2}, \sigma\right\rangle \longrightarrow\left\langle c_{2}, \sigma\right\rangle$
$\frac{\left\langle c_{1}, \sigma\right\rangle \longrightarrow\left\langle c_{1}^{\prime}, \sigma^{\prime}\right\rangle}{\left\langle c_{1} ; c_{2}, \sigma\right\rangle \longrightarrow\left\langle c_{1}^{\prime} ; c_{2}, \sigma^{\prime}\right\rangle}$

If-Else Conditional:
$\overline{\left\langle\text { if true then } c_{1} \text { else } c_{2}, \sigma\right\rangle \longrightarrow\left\langle c_{1}, \sigma\right\rangle}$
$\overline{\left\langle\text { if false then } c_{1} \text { else } c_{2}, \sigma\right\rangle \longrightarrow\left\langle c_{2}, \sigma\right\rangle}$
$\frac{\langle b, \sigma\rangle \longrightarrow\left\langle b^{\prime}, \sigma\right\rangle}{\left\langle\text { if } b \text { then } c \text { else }{ }_{1} c_{2}, \sigma\right\rangle \longrightarrow\left\langle\text { if } b^{\prime} \text { then } c_{1} \text { else } c_{2}, \sigma\right\rangle}$
While-loops:
Evaluating while loops is tricky because the naïve evaluation rule would result in nontermination. The proper evaluation rule unrolls the while-loop, wrapping it within an if-else statement as follows:
$\overline{\langle\text { while } b \text { do } c, \sigma\rangle \longrightarrow\langle\text { if } b \text { then }(c ; \text { while } b \text { do } c) \text { else skip, } \sigma\rangle}$
We provide an example to clarify how this works. Consider the following simple loop:

$$
\text { while } b \leq 10 \text { do } b:=b+1
$$

Our evaluation rule stipulates the evaluation step:

$$
\langle\text { while } b \leq 10 \text { do } b:=b+1, \sigma\rangle \rightarrow\langle\text { if } b \leq 10 \text { then }(b:=b+1 ; \text { while } b \leq 10 \text { do } b:=b+1) \text { else skip, } \sigma\rangle
$$

1.4 Inference Rules

Inference rules can be used to construct proof trees and derive conclusions about an expression or language.

1.4.1 Anatomy of an Inference Rule

$$
\begin{gathered}
\langle a, \sigma\rangle \longrightarrow\left\langle a^{\prime}, \sigma\right\rangle \\
\langle x:=a, \sigma\rangle \longrightarrow\left\langle x:=a^{\prime}, \sigma\right\rangle \\
\uparrow \uparrow
\end{gathered} \quad \frac{\text { Premise }(s)}{\text { Conclusion }}
$$

meta-variables:
One can think of these rules as defining a relation R on four things:
$\mathrm{R} \subseteq C m d \times$ State $\times C m d \times$ State

1.4.2 Rule \longrightarrow Rule Instances

A rule is any rule instance with consistent substitution of meta-variables.
Lets take the following rule:
$\begin{aligned} a_{1} & \longrightarrow a_{1}^{\prime} \\ a_{1}+a_{2} & \longrightarrow a_{1}^{\prime}+a_{2}\end{aligned}$
After meta-variables have been replaced, we obtain the following rule instance:
$(3 * 4) \longrightarrow 12$
$(3 * 4)+5 \longrightarrow 12+5$

Another rule instance is the following, though it is useless:
$(3 * 4) \longrightarrow 13$
$(3 * 4)+5 \longrightarrow 13+5$

1.4.3 Rule Instance Examples

Given the set $\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}\}$
And the following rule instances:

$$
\bar{A} \quad \frac{A D}{C} \quad \frac{A}{D} \quad \frac{B}{C}
$$

What elements of the set can we conclude, using derivations?
(derivation \equiv finite height proof tree)

$$
\mathrm{A}: \quad \bar{A}, \quad \mathrm{D}: \quad \frac{\bar{A}}{D}, \quad \text { and } \mathrm{C}: \quad \frac{\bar{A} \frac{\bar{A}}{D}}{C}
$$

Example proof tree:
$\frac{\bar{A} \frac{\bar{A}}{\bar{D}}}{C}$

This is an example of an inductively defined set.

1.4.4 BNF proof system

Since a proof system is a set of rules, the BNF grammar can be viewed as a set of inference rules used to construct proof trees.

Rules:

$$
\bar{n}, \text { and } \frac{a_{1} a_{2}}{a_{1}+a_{2}} \quad a::=n \mid a_{1}+a_{2}
$$

Proof tree from rule instances:
$\frac{\overline{4} \frac{\overline{2} \quad \overline{3}}{2+3}}{4+(2+3)}$

1.5 Big Step Operational Semantics

We now present the big-step semantics for evaluation of Commands, Arithmetic and Boolean expressions in IMP. As opposed to small-step SOS, which transistions from one IMP command at a time to the next step, big-step semantics defines the transition from a program and state to the final state. Big-step semantics is also know as "natural" semantics.

$$
\begin{array}{ccc}
\text { Small Step SOS } & \leftrightarrow & \text { Big Step SOS } \\
\left\langle c, \sigma_{0}\right\rangle \longrightarrow^{*}\langle\mathbf{s k i p}, \sigma\rangle & \leftrightarrow & \langle c, \sigma\rangle \Downarrow \sigma
\end{array}
$$

1.5.1 Rules

Skip:
$\overline{\langle\text { skip }, \sigma\rangle \Downarrow \sigma}$
Sequences: $\quad \frac{\left\langle c_{1}, \sigma\right\rangle \Downarrow \sigma^{\prime \prime}\left\langle c_{2}, \sigma^{\prime \prime}\right\rangle \Downarrow \sigma^{\prime}}{\left\langle c_{1} ; c_{2}, \sigma\right\rangle \Downarrow \sigma^{\prime}}$
Arithmetic: $\quad \overline{\langle a, \sigma\rangle \Downarrow n}$

Boolean: $\quad \overline{\langle b, \sigma\rangle \Downarrow t}$
Assignment: $\quad \overline{\langle x:=a, \sigma\rangle \Downarrow \sigma[x \mapsto n]}$
If-Else Condition: $\quad \frac{\langle b, \sigma\rangle \Downarrow \text { false }\left\langle c_{1}, \sigma\right\rangle \Downarrow \sigma^{\prime}}{\left\langle\text { if } b \text { then } c_{1} \text { else } c_{2}, \sigma\right\rangle \Downarrow \sigma^{\prime}}$
While Loops:

$$
\langle b, \sigma\rangle \Downarrow \text { false }
$$

$\overline{\langle\text { while } b \text { do } c, \sigma\rangle \Downarrow \sigma}$

$$
\frac{\langle b, \sigma\rangle \Downarrow \text { true }\langle c, \sigma\rangle \Downarrow \sigma^{\prime \prime} \quad\left\langle\text { while } b \text { do } c, \sigma^{\prime \prime}\right\rangle \Downarrow \sigma^{\prime}}{\text { while do } b c, \sigma\rangle \Downarrow \sigma}
$$

1.6 Big-Step SOS vs. Small-Step SOS

Benefits of Big-step

- more extensional, relating initial and final states
- models a recursive interpreter
(The proof tree exactly corresponds to the call tree of the interpreter.)

Benefits of Small-step

- can model more language features
- better for proving some properties of languages

Downside of Big-step:

- Non-terminating programs look the same as those with error(s).

For both cases the solver will say there is no valid proof tree for the program.
Infinite Loop: \langle while true do skip, $\sigma\rangle \longrightarrow\langle$ while true do skip, $\sigma\rangle \longrightarrow \ldots$
Arithmetic Error: $\left\langle x:=\frac{2}{0}, \sigma\right\rangle \longrightarrow$?

