CS611 Lecture b IMP Syntax, Small- and Large-Step Semantics September 8, 2004
Scribe: Arjun Rao and Matthew Stedinger Lecturer: Andrew Myers

1 IMP

IMP, a simple IMPerative language, was introduced at the end of last lecture to provide a simple, and
arugably more familiar, framework for the study of language semantics.

1.1 Syntax

IMP contains several different language constructs:

x € Var

a € Aexp :=n|z|a; ®as (where @ is an arithmetic operation)

b € Bexp ::=true | false | by Abs | by Vb2 | a1 ® az (where © is a comparison)
c € Cmd :=skip | z :=e | c1;¢2 | if bthen ¢; else ¢o | whilebdo ¢

Constants consist of integers n € Z and truth values T = {true, false}.

1.2 Configurations

Unlike in the A-calculus, the storage of values in variables provides for the notion of state in IMP. We define
a configuration to be the current state of evaluation:

(c;0)

where ¢ is an IMP command at some stage of evaluation and o is a store, a function f:Var — Z mapping
variables to integers.

We define the initial state to be oo, a function that maps all variables to 0, or in terms of the A-calculus,
Az.0.

We define the final configuration, if one is reachable after zero or more steps of evaluation, to be:
(skip, o)

where skip reflects that no further computation is possible and o is some final state. Running programs in
IMP, therefore, consists of stepping from an initial configuration to the final configuration in terminating
programs:

(¢,00) — -+ — (skip,0) < (c,00) =" (skip, o)

1.3 Small-Step Operational Semantics

We now present the small-step semantics for evaluation of arithmetic and Boolean expressions and commands
in IMP. Just as with the A-calculus, the evaluation rules are presented as inference rules, which inductively
define relations consisting of the acceptable computational steps in IMP.

1.3.1 Arithmetic Expressions
Integers: (n,o) — n

Variables: (x,0) — o(z)

ng =ni O ng
Arithmetic with values: (nq ® na,0) — ns

(a1,0) — @}

Arithmetic with expressions: (a1 @ ag,0) — af @ as

1.3.2 Boolean Expressions

Evaluation semantics for Boolean expressions are similar to those for arithmetic expressions, and we leave
their construction as an exercise.

1.3.3 Commands
Skip: This command is always the final configuration as defined before, so there is no evaluation rule for it.

Assignment:

(x :=n,0) — (skip, o[z — n])

Sequences:

<Skip7 C2, 0> - <027 U>

{er,0) — {1, 0")

(c1;¢2,0) — (c];c2,07)

If-Else Conditional:

(if true then ¢ else ¢y, 0) — (c1,0)

(if false then c; else co,0) — (c2,0)

<b7 U> - <b/a 0'>
(if b then celse 1¢2,0) — (if b’ then ¢; else g, o)

While-loops:
Evaluating while loops is tricky because the naive evaluation rule would result in nontermination. The proper
evaluation rule unrolls the while-loop, wrapping it within an if-else statement as follows:

(whilebdo ¢,0) — (if b then (¢; while b do ¢) else skip, o)
We provide an example to clarify how this works. Consider the following simple loop:
whileb <10dob:=b+1

Our evaluation rule stipulates the evaluation step:

(whileb <10dob:=b+1,0) — (if b < 10 then (b:= b+ 1; whileb < 10do b := b + 1) else skip, o)

1.4 Inference Rules

Inference rules can be used to construct proof trees and derive conclusions about an expression or language.

1.4.1 Anatomy of an Inference Rule

(a,0) — (d,0) Premise(s)

(x:=a,0) — (z:=d',0) Conclusion
[

meta-variables:

One can think of these rules as defining a relation R on four things:

R C Omd x State x Cmd x State

1.4.2 Rule — Rule Instances

A rule is any rule instance with consistent substitution of meta-variables.
Lets take the following rule:

ap — aj

ay +ax — a’l + a2
After meta-variables have been replaced, we obtain the following rule instance:

(3x4) — 12
(3%x4)+5 — 1245

Another rule instance is the following, though it is useless:

(3*4) — 13
(3x4)+5 — 13+5

1.4.3 Rule Instance Examples

Given the set {A, B, C, D}
And the following rule instances:

AD A B

A C D C

What elements of the set can we conclude, using derivations?
(derivation = finite height proof tree)

elhN

, and C: C

S|

A: A, D:

)

Example proof tree:

Ol |

AD
c

This is an example of an inductively defined set.

1.4.4 BNF proof system

Since a proof system is a set of rules, the BNF grammar can be viewed as a set of inference rules used to
construct proof trees.

Rules:

ay az
n ,and a1 + az au=n|a;+as

Proof tree from rule instances:

_ 23
4 2+3
1+ (2+3)

1.5 Big Step Operational Semantics

We now present the big-step semantics for evaluation of Commands, Arithmetic and Boolean expressions in
IMP. As opposed to small-step SOS, which transistions from one IMP command at a time to the next step,
big-step semantics defines the transition from a program and state to the final state. Big-step semantics is
also know as “natural” semantics.

Small Step SOS < Big Step SOS

(c,00) —* (skip,o) < (c,o) o
1.5.1 Rules
Skip: (skip,0) |} o
(er,o) 4 0” (ca,0") Y0’

Sequences: {c1;¢9,0) | o’
Arithmetic: m
Boolean: W
Assignment: (x :=a,0) | oz — n]

(b,o) || false (c1,0) | o’
If-Else Condition: (if b then ¢, else cq,0) || o’

While Loops:
(b,o) |l false

(whilebdo ¢,0) || o

(b,o) | true {c,0) || ¢’ (whilebdoc,o”) | o
while dobc,o) || o

1.6 Big-Step SOS vs. Small-Step SOS
Benefits of Big-step
e more extensional, relating initial and final states

e models a recursive interpreter
(The proof tree exactly corresponds to the call tree of the interpreter.)

Benefits of Small-step
e can model more language features

e better for proving some properties of languages

Downside of Big-step:

e Non-terminating programs look the same as those with error(s).
For both cases the solver will say there is no valid proof tree for the program.

Infinite Loop: (while true do skip,c) — (while true do skip,o) —

Arithmetic Error: (z:=2,0) — ?

