
CS611 Lecture 5 IMP Syntax, Small- and Large-Step Semantics September 8, 2004
Scribe: Arjun Rao and Matthew Stedinger Lecturer: Andrew Myers

1 IMP

IMP, a simple IMPerative language, was introduced at the end of last lecture to provide a simple, and
arugably more familiar, framework for the study of language semantics.

1.1 Syntax

IMP contains several different language constructs:

x ∈ Var
a ∈ Aexp ::= n | x | a1 ⊕ a2 (where ⊕ is an arithmetic operation)
b ∈ Bexp ::= true | false | b1 ∧ b2 | b1 ∨ b2 | a1 � a2 (where � is a comparison)
c ∈ Cmd ::= skip | x := e | c1; c2 | if b then c1 else c2 | while b do c

Constants consist of integers n ∈ Z and truth values T = {true, false}.

1.2 Configurations

Unlike in the λ-calculus, the storage of values in variables provides for the notion of state in IMP. We define
a configuration to be the current state of evaluation:

〈c, σ〉
where c is an IMP command at some stage of evaluation and σ is a store, a function f :V ar → Z mapping
variables to integers.

We define the initial state to be σ0, a function that maps all variables to 0, or in terms of the λ-calculus,
λx.0.

We define the final configuration, if one is reachable after zero or more steps of evaluation, to be:

〈skip, σ〉
where skip reflects that no further computation is possible and σ is some final state. Running programs in
IMP, therefore, consists of stepping from an initial configuration to the final configuration in terminating
programs:

〈c, σ0〉 → · · · → 〈skip, σ〉 ⇔ 〈c, σ0〉 →∗ 〈skip, σ〉

1.3 Small-Step Operational Semantics

We now present the small-step semantics for evaluation of arithmetic and Boolean expressions and commands
in IMP. Just as with the λ-calculus, the evaluation rules are presented as inference rules, which inductively
define relations consisting of the acceptable computational steps in IMP.

1.3.1 Arithmetic Expressions

Integers: 〈n, σ〉 −→ n

Variables: 〈x, σ〉 −→ σ(x)

Arithmetic with values:
n3 = n1 ⊕ n2

〈n1 ⊕ n2, σ〉 −→ n3

Arithmetic with expressions:
〈a1, σ〉 −→ a′

1

〈a1 ⊕ a2, σ〉 −→ a′
1 ⊕ a2

1

1.3.2 Boolean Expressions

Evaluation semantics for Boolean expressions are similar to those for arithmetic expressions, and we leave
their construction as an exercise.

1.3.3 Commands

Skip: This command is always the final configuration as defined before, so there is no evaluation rule for it.

Assignment:

〈x := n, σ〉 −→ 〈skip, σ[x → n]〉

〈a, σ〉 −→ 〈a′, σ〉
〈x := a, σ〉 −→ 〈x := a′, σ〉

Sequences:

〈skip; c2, σ〉 −→ 〈c2, σ〉

〈c1, σ〉 −→ 〈c′1, σ′〉
〈c1; c2, σ〉 −→ 〈c′1; c2, σ

′〉

If-Else Conditional:

〈if true then c1 else c2, σ〉 −→ 〈c1, σ〉

〈if false then c1 else c2, σ〉 −→ 〈c2, σ〉

〈b, σ〉 −→ 〈b′, σ〉
〈if b then c else 1c2, σ〉 −→ 〈if b′ then c1 else c2, σ〉

While-loops:
Evaluating while loops is tricky because the näıve evaluation rule would result in nontermination. The proper
evaluation rule unrolls the while-loop, wrapping it within an if-else statement as follows:

〈while b do c, σ〉 −→ 〈if b then (c;while b do c) else skip, σ〉

We provide an example to clarify how this works. Consider the following simple loop:

while b ≤ 10 do b := b + 1

Our evaluation rule stipulates the evaluation step:

〈while b ≤ 10 do b := b + 1, σ〉 → 〈if b ≤ 10 then (b := b + 1;while b ≤ 10 do b := b + 1) else skip, σ〉

1.4 Inference Rules

Inference rules can be used to construct proof trees and derive conclusions about an expression or language.

2

1.4.1 Anatomy of an Inference Rule

〈a, σ〉 −→ 〈a′, σ〉
〈x := a, σ〉 −→ 〈x := a′, σ〉

Premise(s)
Conclusion

↑ ↑ ↑
meta-variables:

One can think of these rules as defining a relation R on four things:

R ⊆ Cmd × State× Cmd× State

1.4.2 Rule −→ Rule Instances

A rule is any rule instance with consistent substitution of meta-variables.

Lets take the following rule:

a1 −→ a′
1

a1 + a2 −→ a′
1 + a2

After meta-variables have been replaced, we obtain the following rule instance:

(3 ∗ 4) −→ 12
(3 ∗ 4) + 5 −→ 12 + 5

Another rule instance is the following, though it is useless:

(3 ∗ 4) −→ 13
(3 ∗ 4) + 5 −→ 13 + 5

1.4.3 Rule Instance Examples

Given the set {A, B, C, D}
And the following rule instances:

A
A D
C

A
D

B
C

What elements of the set can we conclude, using derivations?
(derivation ≡ finite height proof tree)

A: A, D:
A
D, and C:

A
A
D

C

Example proof tree:

A
A
D

C

This is an example of an inductively defined set.

3

1.4.4 BNF proof system

Since a proof system is a set of rules, the BNF grammar can be viewed as a set of inference rules used to
construct proof trees.

Rules:

n , and
a1 a2

a1 + a2 a ::= n | a1 + a2

Proof tree from rule instances:

4
2 3
2 + 3

4 + (2 + 3)

1.5 Big Step Operational Semantics

We now present the big-step semantics for evaluation of Commands, Arithmetic and Boolean expressions in
IMP. As opposed to small-step SOS, which transistions from one IMP command at a time to the next step,
big-step semantics defines the transition from a program and state to the final state. Big-step semantics is
also know as “natural” semantics.

Small Step SOS ↔ Big Step SOS
〈c, σ0〉 −→∗ 〈skip, σ〉 ↔ 〈c, σ〉 ⇓ σ

1.5.1 Rules

Skip: 〈skip, σ〉 ⇓ σ

Sequences:
〈c1, σ〉 ⇓ σ′′ 〈c2, σ

′′〉 ⇓ σ′

〈c1; c2, σ〉 ⇓ σ′

Arithmetic: 〈a, σ〉 ⇓ n

Boolean: 〈b, σ〉 ⇓ t

Assignment: 〈x := a, σ〉 ⇓ σ[x 7→ n]

If-Else Condition:
〈b, σ〉 ⇓ false 〈c1, σ〉 ⇓ σ′

〈if b then c1 else c2, σ〉 ⇓ σ′

While Loops:
〈b, σ〉 ⇓ false

〈while b do c, σ〉 ⇓ σ

〈b, σ〉 ⇓ true 〈c, σ〉 ⇓ σ′′ 〈while b do c, σ′′〉 ⇓ σ′

while do b c, σ〉 ⇓ σ

4

1.6 Big-Step SOS vs. Small-Step SOS

Benefits of Big-step

• more extensional, relating initial and final states

• models a recursive interpreter
(The proof tree exactly corresponds to the call tree of the interpreter.)

Benefits of Small-step

• can model more language features

• better for proving some properties of languages

Downside of Big-step:

• Non-terminating programs look the same as those with error(s).
For both cases the solver will say there is no valid proof tree for the program.

Infinite Loop: 〈while true do skip, σ〉 −→ 〈while true do skip, σ〉 −→ · · ·

Arithmetic Error: 〈x := 2
0 , σ〉 −→ ?

5

