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1 Let

So far we’ve been missing the ability to declare local variables. The let expression (as in ML), written
let x = e1 in e2 end, binds the variable x to the result of e1 and then evaluates e2. That is, the result of
evaluating let x = v1 in e2 end should be the result of evaluating e2{v1/x}. This familiar-looking expression
suggests that we can encode a let with the lambda-calculus term that reduces to the same expression: that
is, the term (λx. e2)e1.

Using call-by-value we evaluate this term in the following manner. Do the reduction of the expression e1

to the value v1, then substitute x for v1 in e2. This is exactly what we’d expect from the let expression.

2 Recursion

Consider the recursive form of the factorial function

fun fact(x) = if (x = 0) then 1 else x ∗ fact(x− 1)

Using λ-calculus we might try to write it as

FACT
∆= λx. IF (ZERO? x) 1 (∗ (FACT (− x 1)) x)

This is not a definition but an equation. Recall that FACT isn’t really part of the λ-calculus, it’s just an
abbreviation. An abbreviation can’t contain itself! Trying that here would result in an infinite string, always
substituting FACT, but always having one left. In order to remove the recursive definition we will define a
helper function FACT’.

FACT’
∆= λf. λx. IF (ZERO? x) 1 (∗ (f f (− x 1)) x)

FACT
∆= FACT’ FACT’

Running FACT with argument 3 gives:

FACT 3 → FACT’ FACT’ 3
→ (λx. IF (ZERO? x) 1 (∗ (FACT’ FACT’ (− x 1)) x)) 3
→ IF (ZERO? 3) 1 (∗ (FACT’ FACT’ (− 3 1)) 3)
→ (∗ (FACT’ FACT’ 2) 3)
→ (∗ ((λx. IF (ZERO? x) 1 (∗ (FACT’ FACT’ (− x 1)) x)) 2) 3)
→ (∗ (IF (ZERO? 2) 1 (∗ (FACT’ FACT’ (− 2 1)) 2)) 3)
→ (∗ (∗ (FACT’ FACT’ 1)) 2) 3)
→ (∗ (∗ (∗ (FACT’ FACT’ 0)) 1) 2) 3)
→ (∗ (∗ (∗ 1 1) 2) 3)
→ 6

Recursion-removal trick

We can generalize what we did to FACT for any recursive function F that we need to remove the recursion
from.

1. Add extra (first) argument f to the function (F′ = λf.F).

2. Replace all recursive references of F in F′ with (f f).

3. Use F = F′ F′ as the recursive function.
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3 Fixed point

It is possible to remove recursion in an even easier way, by letting the λ-calculus work for us.

F = λf. λx. IF (ZERO? x) 1 (∗ (f (− x 1)) x)
(F FACT) = FACT

→ λx. IF (ZERO? x) 1 (∗ (FACT (− x 1)) x)

FACT is a fixed point of F. A fixed point for function f is defined as a point x such that f(x) = x. We can
represent recursive functions as fixed points of higher order functions. In this way they don’t require the self
application (f f), which makes it hard to assign a type.

Can we find a fixed point for any recursive function? We know that the set of all λ-terms is countable,
but the set of functions λ-terms → λ-terms is not, so finding a fixed point for any arbitrary function is not
trivial. But it is possible, given an arbitrary function F we can find its fixed point YF by:

F(YF) = YF

F(YF) x = (YF) x

YF = λx.F(YF) x

Y = λf. λx. f (Y f) x

Y’
∆= λy. λf. λx. f (y y f) x

Y
∆= Y’ Y’

A more traditional form would be: (Note: only works in a Call-By-Value languages)

Y = λf.
(
(λx. (f x x)) (λx. (f x x))

)
This is a function that is occasionally useful for real programming problems, for example when using recursive
modules in ML.

4 Substitution

In the previous lecture we defined β-reduction in Call-By-Name as: (λx. e1)e2 → e1{e2/x}
This definition is incomplete because we do not wish to replace every occurrence of x by e2, but only those
that are addressed by the exterior λx.
Many mathematicians including Church, Hilbert and even Newton used incomplete definitions such as this
for substitution.
Example 1, use this rule on the integral

∫
(1 +

∫
x dx)dy for y ranging from 0 to some value x and you get∫ y=x

y=0

(1 +
∫

x dx)dy = (y + y

∫
x dx)|y=x

y=0 = (x +
∫

x2 dx)− 0 = (x +
∫

x2 dx)

Example 2, (y(λx. x y)){x/y} = (x(λx. x x)) while we meant it to translate to (x(λa. a x)). This is called
Variable Capture.

Lets define the free variables in an expression:

FV (e) = set of free variables in e

FV (x) = {x}
FV (e1 e2) = FV (e1) ∪ FV (e2)
FV (λx. e) = FV (e) \ {x}
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so our final definition of substitution is:

x{e/x} = e
x′{e/x} = x′ ( where x 6= x′ )

(e1 e2){e/x} = e1{e/x} e2{e/x}
(λx. e0){e/x} = λx. e0 ( because any x in e0 is not the x from outside the λx )
(λy. e0){e/x} = λy. (e0{e/x}) ( where x 6= y, y /∈ FV (e) )
(λy. e0){e/x} = λy′. e0{y′/y}{e/x} ( where x 6= y, x 6= y′, y′ /∈ FV (e) and y′ /∈ FV (e0) )
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