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1 Introduction

The lambda calculus was originally developed in the 1930s before computers. It was developed by math-
ematicians, trying to come up with a way of writing down functions. One way of describing functions
mathematically is via their extension. This can be a list of pairs of (input,output) values, or as a graph
mapping one domain to the other.

Lambda calculus gives an intensional representation—a program, or what you have to do in order to
evaluate the function. As an aside, this class is quite a bit about how to get from an intensional representation,
an algorithm, to the extension, meaning, or effect of a function. Real programming languages such as Lisp,
Scheme, Haskell and ML are very much based on lambda calculus, although there are differences as well.

2 Syntax

The following is the syntax of the λ-calculus. A term is defined as follows:

e ::= x (variable)
| e0 e1 (application)
| λx. e (abstraction)

In an abstraction, x is the argument, e is the body of the function. Notice that this function doesn’t have
a name. In mathematics it is common to write f(x) = e to define a function named f . A corresponding
anonymous notation that is frequently used is x 7→ x2; this is really the same thing as λx. x2.

Here are some examples of terms. First, we present (and define) the identity function:

ID = λx. x

The next example is a function that will ignore its argument and return the identity function.

λx. λa. a

This is the same as

λx. ID

2.1 Closed terms

An occurrence of a variable x in a term is said to be bound if there is an enclosing λx. e; otherwise, it is free.
A closed term is one in which all identifiers are bound; we call such terms combinators. We will consider a
program in the lambda calculus to be any closed term.

For example, consider the following term:

λx. (x(λy. ya)x)y

Both occurrences of x are bound, the first occurence of y is bound, the a is free, and the last y is also
free, since it is outside the scope of the λy.

If a program has some variables that are free, then you do not have a complete program as you do not
know what to do with the free variables. Hence, a well formed program in lambda calculus is going to be
closed.
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2.2 Higher-order functions

In lambda calculus, we can define higher-order functions. These are functions that can take functions as
arguments and/or return functions as results. In fact, every argument is a function and every result is a
function. That is, functions are first-class values.

This example takes a function as an argument and applies it to 5:

λf. (f 5)

We can further generalize. This function takes an argument v and returns a function that calls its
argument on v:

λv. λf. (f v)

2.3 Multi-argument functions and currying

In the syntax given above, we only define functions as taking a single argument. Why don’t we need to have
multiple arguments? We could imagine extending the syntax as follows:

e ::= . . . λx1 . . . xn. e (multi-argument abstraction)
| e0 e1 e2 . . . en (multi-argument application)

In the multi-argument application, e0 is a n-argument function and e1 . . . en are the arguments.
It turns out this isn’t any more expressive than basic lambda calculus. We may actually write down

terms that look like the above in this course on occasion, but it’s just syntactic sugar. It is a little easier
for the programmer to read but can be transformed into something more basic that does not require the
extended syntax. A transformation that removes syntactic sugar is called desugaring.

How do we desugar multi-argument functions?

λx1 . . . xn. e ⇒ λx1. λx2. λxn. e
e0 e1 . . . en ⇒ (. . . ((e0 e1) e2) . . . en)

Note that application is left-associative - that is, e1 e2 e3 is parsed as (e1 e2) e3.

3 Semantics

3.1 β-reductions

We would like to believe that the expression (λx. e) v is ‘equal’ in some sense to the body of e where we have
replaced x with v—we want to call/invoke/apply the function e with v as its argument. The substitution
is not as simple as it seems: not all xs should be replaced with v, just the xs bound to the outermost x in
our expression. The notation for this syntactic substitution is as follows: e{v/x}. Using this notation, we
introduce the β-reduction:

(λx. e) v −→ e{v/x}

We say that the two terms above are β-equivalent.
The β-reduction is an example of a rewrite rule, a rule that says you can take one piece of syntax and

replace it with another piece of syntax.
We will see shortly how to perform computations using β-reduction. However, we will deal first with the

important issue of choosing an order in which to apply the reductions. There are several options for this.
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3.2 CBV (call-by-value) semantics

In call-by-value semantics, all expressions are evaluated before being passed as function arguments. Formally,
we will require that function arguments be reduced to values before the function is processed.

What is a value? A value is a closed term that can no longer be reduced in any way. Syntactically, all
values are of the form λx. e. In the semantic descriptions that follow, we use v to denote any possible value.

Here are the CBV structural operational semantics (SOS):

β − reduction evaluation steps

Call-by-value SOS: (λx. e)v −→ e{v/x}
e0 −→ e′0

e0 e1 −→ e′0 e1

e −→ e′

v e −→ v e′

v ::= (λx. e)

The fact that there are nothing at the top in the first rule implies that it has no preconditions for
application and hence, can always be applied assuming that the expression looks like left-hand side of the
rewrite (this is called the redex). In contrast, the second and third rules specify in what order beta reductions
should be done. For example, the second rule says that a lambda program of the form e0 e1 steps to e′0 e1 if
e0 steps to e′0. In other words, evaluation can proceed by rewriting the left side of an application expression.

Here is an example of a computation using these rules. Let SUCC be a function which takes a number
and returns the next larger number (we will see how to define such a function later). Start with the following
expression:

(λx. (λ y (y x )) 3) SUCC

After we apply one β-reduction (using the second rule and the β reduction rule), we get:

(λ y (y 3))SUCC

Applying another β-reduction directly yields:

SUCC 3

Finally, we compute the result of SUCC applied to 3:

4

3.3 Infinite loops and motivation for CBN (call-by-name) semantics

Consider the term Ω, defined as follows:

Ω = (λx. (x x)) (λx. (x x))

If we try β-reducing Ω, we simply get Ω back again. Mathematically: Ω −→ Ω. Using β-reductions, the
program Ω will never terminate; we have an infinite loop.

Now consider what happens if we define a term F that discards its argument:

F = λx. λy. y

What happens if we try to evaluate FΩ using CBV semantics? Since CBV always requires us to evaluate
the argument to a function first, we will have to begin with Ω. What happens is another infinite loop:
FΩ −→ FΩ. Intuitively, this corresponds to a programming situation where a method p calls a method q
and uses the output of q in computation. If q goes into an infinite loop, so will p.

The problem with the FΩ example, however, is that the infinite-loop behavior seems counterintuitive;
after all, F is a term that should always return the identity function ID, no matter what argument x it
receives. The problem arises because we are forced by the CBV semantics to evaluate Ω first. But this is a
constraint imposed by the CBV semantics; in another model, such as CBN (call-by-name), things can look
different.
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3.4 CBN (call-by-name) semantics

Unlike CBV, CBN semantics performs lazy evaluation, in which unevaluated expressions (i.e., computations)
are passed around to functions. Evaluation is delayed as long as possible. The rewrite rules for CBN are:

β − reduction evaluation step

Call-by-name SOS: (λx. e0)e1 −→ e0{e1/x}
e0 −→ e′0

e0 e1 −→ e′0 e1

Note that applying CBN semantics to FΩ as defined above yields ID, as expected.
Most programming languages (ML, for instance) are call-by-value because laziness is difficult to implement

efficiently.

4 Defining common programming language functions in lambda calculus

We now show how to encode some familiar programming-language consructs in lambda calculus.

4.1 Booleans

We define the boolean functions TRUE and FALSE as follows (note that we use syntactic sugaring to write
the functions directly as two-argument functions).

TRUE = λxy. x = λx. λy. x (desugared version)
FALSE = λxy. y = λx. λy. y (desugared version)

We also define the additional IF expression as follows:

IF = λxyz. xyz = λx. λy. λz. (xy)z

We can check that this function behaves as expected by checking, for instance, that

IF TRUE e1 e2 −→ e1

We can define boolean functions, for example AND:

AND = λb1b2. IF b1(IF b2 TRUE FALSE) FALSE

4.2 Natural numbers

We define natural numbers in lambda calculus using Church numerals, named for Alonzo Church. The
intuition behind Church numerals is to represent a number n as a function that transforms any function f
into the function fn. We proceed as follows:

0
4
= λf. λx. x (ID is f0!)

1
4
= λf. λx. fx

2
4
= λf. λx. f(fx)

3
4
= λf. λx. f(f(fx))

n
4
= λf. λx. f(. . . (f(fx))) (with n applications of f in a row)

And so on. We can also now define the successor function, SUCC. This implementation uses the argument
number n to construct the function fn, then applies f one more time to get fn+1.
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SUCC = λn. λf. λx. f((n f) x)

Addition can be defined using SUCC; adding n1 to n2 is simply taking the successor of n2, n1 times in
a row.

PLUS = λn1n2. (n1 SUCC) n2

Functions such multiplication, exponentiation, subtraction can also be implemented.
We can implement additional useful features such as data structures using lambda calculus terms, as

discussed in Pierce.
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