
Cornell University
Computer Science 611

Problem Set 5 DUE: 3 December 2004

Instructions

Turn in the written part of the assignment by 5pm on the due date in Upson 4119. The original due date
has been extended until December 3 by popular demand. However, be aware that Problem Set 6 will be
released on Monday, November 29, and will also be due on the same day. You are advised not to wait until
November 29 to start working on this problem set!

1. Logical relations (40 pts)

Consider the CBV simply-typed lambda calculus extended by products, λ→∗.

The types are:

τ ::= int | τ1 → τ2 | τ1 ∗ τ2

The terms are:
e ::= x | e1 e2 | n | λx :τ. e | (e1, e2) | left e | right e

The values are:

v ::= λx :τ. e | (v0, v1) | n

The evaluation contexts are the usual:

E[·] ::= [·] e | v [·] | ([·], e) | (v, [·]) | left [·] | right [·]

We have the usual rule:

e1 −→ e2

E[e1] −→ E[e2]

And the reductions:

(λx :τ. e)v −→ e{v/x} left (v0, v1) −→ v0 right (v0, v1) −→ v1

The type system is standard, with the rules:

Γ ` n : int Γ, x :τ ` x : τ

Γ ` e0 : σ → τ Γ ` e1 : σ

Γ ` e0 e1 : τ

Γ, x : σ ` e : τ

Γ ` λx :σ. e : σ → τ

Γ ` e0 : τ1 Γ ` e1 : τ2

Γ ` (e0, e1) : τ1 ∗ τ2

Γ ` e : τ1 ∗ τ2

Γ ` left e : τ1

Γ ` e : τ1 ∗ τ2

Γ ` right e : τ2

(a) Try to prove the strong normalization theorem (for each expression e such that ` e : τ for some
type τ , there is no infinite sequence of reduction steps starting from e) for λ→ (not for λ→∗) by
structural induction on e. Prove all the cases which are amenable to this proof and point clearly
where the proof fails.

1

(b) The proof in the previous section failed, which perhaps isn’t that surprising, given that the not-
so-obvious technique of logical relations has been introduced at the lecture to prove this fact. You
will use the same technique to do the working proof of strong normalization for1 λ→∗.
Give the appropriate definition of the relation Rτ for λ→∗.

(c) Give the appropriate extension of the definition of the substitution operator γ̂ for λ→∗. You may
refer to the rules given in the lecture (from 2001) for γ̂ for λ→, including them in your writeup is
not necessary.

(d) Prove by the induction on the height of the derivation (in other words, by induction on the typing
rules) the following claim:

∀Γ ` e : τ. (γ |= Γ ⇒ γ̂(e) ∈ Rτ)

This claim implies trivially the strong normalization for λ→∗. State clearly every part of the
proof, in particular the inductive hypothesis and where it’s used. You may find the following fact
useful:

(e ∈ Rτ ∧ e → e′) ⇔ (e′ ∈ Rτ ∧ e → e′)

You may use it as a lemma without proving it.

2. Maybe types (30 pts)

In many languages (e.g., C, Java) it is convenient to have a special “null” value that acts like a member
of any reference type that is desired. However, the possibility that every reference may turn out to
be null also creates difficulties for both the programmer and the language implementer. A neat way
to have the expressive power of null without the undesirable side effects is to introduce a special type
constructor maybe that effectively augments any type τ with a special null value 〈〉. Because the
null value can be represented by a distinguished pointer value, a τ maybe is easily implemented just
as compactly as a C pointer or a Java reference. In this problem you will develop the semantics of
maybes.

We start with the typed lambda calculus λ→ and extend it as follows:

τ ::= . . . | τ maybe

e ::= . . . | 〈e〉 | 〈〉 | if 〈x〉 = e0 then e1 else e2

v ::= . . . | 〈v〉 | 〈〉

Informally, the extensions works as follows. The new introduction form 〈e〉 injects the value of e into
the corresponding maybe type. The introduction form 〈〉 is the special null value. The special if form
checks whether an expression e0 evaluates to a non-empty maybe; if so, the expression e1 is evaluated
with x bound to the injected value. If not, the expression e2 is evaluated instead.

(a) Give rules defining the new reductions needed for the extended language.

(b) Assuming left-to-right evaluation and the values given above, define how to extend the legal
evaluation contexts E[·] in which reductions can occur.

(c) Give any new typing rules that are required for the extended language.

(d) Define the weakest sound subtyping relationship on types τ maybe and τ ′ maybe and justify it by
defining the appropriate coercion function.

1The proof easily extends to λ→∗+. What is more remarkable is that the same technique can be extended to prove the
strong normalization for λ2 (System F), the lambda-calculus with impredicative polymorphism, and many other very powerful
type systems.

2

(e) Do the same for τ maybe and τ . Why would such a subtype relationship be helpful?

(f) Give a typed translation from this language (λ→ extended with maybe) to the language λ→+.
It should translate type derivations in the source language to terms with type derivations in the
target language, inductively demonstrating that any well-typed source term produces a well-typed
target term.

3. Type inference (30 pts)

The source file inference.sml contains a partial implementation of type inference for a simple SML-like
language (but without let-polymorphism). Finish this implementation. You can change anything you
want but you should only have to write code in the places that say “IMPLEMENT ME”. Function
declarations may be recursive in SML, and in this language too. Submit the completed implementation
via CMS. You may work with another student on this implementation.

3

