
Cornell University
Computer Science 611

Problem Set 4 DUE: 5 November 2004

Instructions

Turn in the written part of the assignment by 5pm on the due date in Upson 4119.

1. Induction (25 pts)

Prove the following assertions using well-founded induction. Make sure to clearly identify what induc-
tion is being performed on, to state the induction hypothesis and point out where it is being used.

(a) Given a term e in the untyped lambda calculus, show that it doesn’t matter in what order you
substitute closed terms. That is, given closed terms e1, e2, we have

e{e1/x}{e2/y} = e{e2/y}{e1/x}

assuming x 6= y.

(b) Here’s a fact we used in the soundness proof for the soundness/safety proof of the simply typed
lambda calculus: the free variables of a well-typed term are always found in its typing environment:

Γ ` e : τ =⇒ FV(e) ⊆ dom(Γ)

2. First-class Modules (25 pts)

The simple module values we talked about earlier in class had more expressive power than those in
many programming languages in that they were first-class values. In fact, they look suspiciously close
to objects in an object-oriented language.

Suppose we extend call-by-value uML with the following expression forms similar to those we saw in
the simpler module mechanism presented in class:

e ::= . . . | module m (fields X;methods Y) | e.x | extend e1 by e2

f ::= λx. e
X ::= x1 = e1, . . . , xn = en

Y ::= y1 = f1, . . . , yn = fn

In this new language, uMLm, a module expression introduces a name for the module value itself, m.
This identifier is in scope in the remainder of the module expression and may be used in the method
expressions fi (but not the field definitions ei). None of the other xi, yi are in scope in the ei, fi, but
you can get to them indirectly in the fi’s via m. The fields bindings are “by-value”, in that the ei are
evaluated when the module expression is encountered, not when the fields are selected. The methods
bindings are constrained to be functions and so are automatically values.

The expression e.x (or e.y) selects the field value named x (or method named y) that is exported by
the module value that e evaluates to.

The expression extend e1 by e2 produces a new module values from two existing ones that are obtained
by evaluating e1 and e2. The new module value defines an identifier if it is defined in either e1 or e2,
and the definitions in e2 take precedence.

Using these features, we can write code that is at least superficially object-oriented (assuming the usual
desugaring for let):

1

let make_point = rec λx0.λy0.
(module p (fields x = x0,

y = y0,
methods lengthsq = λu. p.x*p.x + p.y*p.y,

minus = λp2. make_point (p.x - p2.x, p.y - p2.y))) in
let p1 = make_point 1 2 in
let p2 = make_point 2 4 in
p1.minus(p2).lengthsq unit

The result of this program is 5.

In this problem you will extend the semantics of uML to describe uMLm. Unlike in the module
semantics given in class, modules should be treated as environment extenders: that is, members of the
domain Env → Env that extend an existing environment with a set of possibly new bindings.

(a) Make all changes to the domain equations of uML necessary to support these language features.

(b) The module expression permits the module name to occur only in method definitions. Why is
this limitation important for the ability to define a semantics for this language?

(c) Define the semantic function C for the new uMLm expression forms.

(d) Consider the following code:

let o1 = module this (
fields x = 0,

y = 0
methods getx = λu. this.x

) in
let setx = λobj. λnewx. extend obj by module this’ (

fields x = newx
methods

)
in
setx(o1, 5).getx(unit)

What is the result of this program under your semantics? Does this agree with your intuition
about how objects behave? Explain briefly.

3. Standard Semantics (25 pts)

We saw earlier that we could use CPS translation to compactly encode non-local control features. In
this problem we’ll use this approach to model a break statement like that in Java. Consider the IMP
language, which already has while, and for which we’ve seen a direct semantics on the prelim:

x ∈ Var

a ∈ Aexp ::= n | x | a1 + a2 | a1 − a2 | a1 × a2

b ∈ Bexp ::= true | false | b1 ∧ b2 | b1 ∨ b2 | a1 = a2 | a1 ≤ a2

c ∈ Com ::= skip | x := a | c1; c2 | if b then c1 else c2 | while b do c

The semantics we used on the prelim was a direct semantics; here we’ll write a continuation semantics
which will look very much like the CPS translations we’lve already been doing, except that the functions
we will write are mathematical functions on well-defined domains. The first step is to define the domains
that will be the interpretations of various terms. It makes sense to define a separate kind of continuation
for each of the three kinds of terms (Aexp, Bexp, and Com. Recall that a continuation semantics
involves continuations, which are functions that don’t return a value. We introduce a domain Answer

2

to represent what continuations return. Since continuations don’t return, Answer could be equally well
be almost anything. By leaving it unspecified, we ensure that we don’t use it!

ACont = Z → Answer

BCont = T → Answer

CCont = Σ → Answer

The three semantic functions then send their results to the appropriate kind of continuation:

A[[a]] ∈ACont → Σ → Answer

B[[b]] ∈BCont → Σ → Answer

C[[c]] ∈ CCont → Σ → Answer

Now we can define the meaning of the various terms. For example, the meaning of a variable expression
x and a command skip is as follows:

A[[x]] = λk ∈ ACont . λσ ∈ Σ . k(σx)
C[[skip]] = λk ∈ CCont . λσ ∈ Σ . kσ

We can even use η-reduction to simplify a bit:

C[[skip]] = λk ∈ CCont . k

(a) Finish writing the rest of the continuation semantics for IMP. The while command will need to
use fix just like in the direct semantics. Annotate all λ’s with explicit domains, as above. You do
not have to use exactly the domains given above, but if you change them you must justify it.

(b) Now suppose that we add a break statement to IMP. Informally, break causes the closest en-
closing while statement to immediately terminate. Show how to modify your domain definitions
and your semantics to support this new statement.

4. Soundness (25 pts)

We saw that the simply-typed lambda calculus has a sound type system because it preserves types and
guarantees progress on well-typed terms. Thus, well-typed terms do not get stuck (evaluation is safe).
Suppose that we add pair terms and product types as described in Lecture 24. Extend the preservation
and progress proofs from λ→ to demonstrate soundness for this extended language λ→,∗.

3

