
CS611 Preliminary Exam October 26, 2000

Solutions

1 Domain theory

a. (10 pts.) Assume that f, g : D → D are continuous functions on a pointed cpo D with f(⊥) = g(⊥)
and f ◦ g = g ◦ f . Prove that fix f = fix g.

Lemma: fn(⊥) = gn(⊥) (by induction on n)

fn(⊥) = fn−1(f(⊥))
= fn−1(g(⊥))
= g(fn−1(⊥)) (by commutativity)
= g(gn−1(⊥)) (induction hypothesis)
= gn(⊥))

Since fn(⊥) = gn(⊥) for all n,
⊔
fn(⊥) =

⊔
gn(⊥).

b. (10 pts.) Given partial orders D1, . . . , Dn with respective bottom elements ⊥1, . . . ,⊥n, the smash
product D1 ⊗ · · · ⊗Dn is a partial order formed by taking tuples containing only non-bottom elements
from the Di plus a single new bottom element. Another way to think of it is as the ordinary product
construction, but where all tuples containing any bottom component have been identified. Formally,

(D1,�1)⊗ · · · ⊗ (Dn,�n) = (D,�)

where

D = {〈d1, . . . , dn〉 | di ∈ Di ∧ di = ⊥i
i∈1..n} ∪ {⊥}

and the relation � is the least partial order relation containing at least the relationships defined by
the following two rules:

di �i d
′
i

i∈1..n

〈d1, . . . , dn〉 � 〈d′1, . . . , d′n〉

⊥ � 〈d1, . . . , dn〉
Prove that the smash product of pointed cpos D1, . . . , Dn is a pointed cpo.

First, note that the ordering relation defined on the smash product is a partial order (once all the
reflexive relationships are added). The only non-trivial kind of ω-chain has the form

. . . � 〈d′1, . . . , d′n〉 � 〈d′′1 , . . . , d′′n〉 � 〈d′′′1 , . . . , d
′′′
n 〉 . . .

where d′i � d′′i � d′′′i . . .

Any upper bound of such a chain has the form 〈d1, . . . , dn〉 where di is an upper bound of d′i, d
′′
i , etc.

Therefore, the tuple whose components are the least upper bounds componentwise is no larger than any
other upper bound and must be the least upper bound itself. This argument is of course exactly the
same as the argument for an ordinary product of cpos, which makes sense because the smash product
is isomorphic to the lift of the product of the cpos minus their bottom elements.
Finally, D is a pointed CPO because it has a bottom element, ⊥.
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2 Operational semantics for concurrent processes

The new concurrent programming language LIMPA extends IMP with support for multiple executing pro-
cesses, each with their own state, and interprocess communication primitives. The IMP language is extended
with the following new syntax:

c ::= . . . | fork c | send p, a | X := recv P

P ::= {p1, . . . , pn}

The fork command executes the command c in a new process whose state is initially the same as that of
the process executing the fork. The send command sends the value of the expression a to the port p. Ports
are assumed to come from some countable set of port identifiers whose precise form is unimportant. The
recv command allows a process to read non-deterministically from any of a set of ports P . (The ability to
read from a set of ports allows a receiver to multiplex multiple senders.) Both send and recv are blocking
communication primitives: the sending process waits at a send until another process executes a matching
recv, and vice versa. A given message is only delivered to a single process.

For example, the following program ping-pongs an integer counter back and forth between two processes,
such that one process only sees the even integers and the other the odd ones. The main process forks two
processes and then terminates, but the program executes until all processes are done.

x := 0;
fork (while x < 1000 do (send p1, x+1; x := recv {p1}));
fork (while x < 1000 do (x := recv {p1}; send p1, x+1))

The LIMPA designers need your ingenuity in designing the small-step operational semantics for the
language. They have managed to decide on a configuration for the semantics; a configuration t is defined as:

t ::= c, σ | t1 � t2

A configuration is essentially an unordered collection of process configurations (〈c, σ〉 pairs) and can be
written as c1, σ1 � . . . � cn, σn. Note that the symbol � is not part of the LIMPA language syntax! To allow
the list of processes to be reordered and reassociated arbitrarily without destroying or creating processes,
they have added the following rules already:

t1 � t2 → t2 � t1

t1 � (t2 � t3) → (t1 � t2) � t3

(t1 � t2) � t3 → t1 � (t2 � t3)

The LIMPA designers understand IMP pretty well, but they are having trouble defining the small-step
rules for fork, send, and recv.
a. (3 pts.) Define what configurations you would like to consider final in LIMPA. What kinds of stuck
configurations, if any, exist?

One reasonable choice for a final configuration is a configuration of the form skip, σ.
Because send and recv can block waiting for an appropriate process to exchange information with, a

configuration c1, σ1 � . . . � cn, σn is stuck if each of the commands ci has the form send pi, n or send pi, n; c
or X := recv Pi or X := recv Pi; c, and none of the ports pi is a member of any of the sets Pi.

b. (5 pts.) Assuming p ∈ P , what should the configuration send p n, σ1 � X := recv P, σ2 step to in
order that progress is made and the message is transmitted to exactly one process?

skip, σ1 � skip, σ2[X �→ n]
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How about send p n; c1, σ1 � X := recv P ; c2, σ2, where c1 and c2 are arbitrary commands?

skip; c1, σ1 � skip; c2, σ2[X �→ n]

or

c1, σ1 � c2, σ2[X �→ n]

To write the rules for more general uses of send, recv and the existing IMP commands, a more general
technique using evaluation contexts is needed. First of all, the designers would like to be able to express most
of the semantics by building on the IMP SOS with the following rule, in which the relation in the premise is
the original IMP small-step evaluation relation, and the function T is a suitably defined evaluation context.

〈c, σ〉 → 〈c′, σ′〉
T [c, σ] → T [c′, σ′]

c. (5 pts.) Write a BNF definition of the evaluation context T . It may be useful to define more than one
kind of evaluation context.

T ::= [·] | T � t

C ::= [·] | C; c

d. (5 pts.) Use your evaluation context T to write a small-step rule for send and recv.

p ∈ P

T [C1[send p n], σ1 � C2[X := recv P ], σ2] → T [C1[skip], σ � C2[skip], σ2[X �→ n]]

e. (5 pts.) Similarly, write a small-step rule for fork.

T [C[fork c], σ] → T [C[skip], σ] � c, σ

f. (2 pts.) What other rules are needed to complete the LIMPA SOS?

For termination:

skip, σ � t → t
For evaluation of send:

〈a, σ〉 → 〈a′, σ〉
T [C[send p a, σ]] → T [C[send p a′, σ]]

3 A variation on continuation-passing style

In class we talked about CPS conversion from a call-by-value lambda calculus to a simpler CPS language
in which the bodies of abstractions could only be “statements”. However, the application expression in the
language is perhaps still more complex than desirable if using CPS to represent low-level code. Consider the
following CPS language in which expressions can only be bound to variables:

3



e ::= fn(x1, x2) s | halt

s ::= x1(x2, x3) | let x = e in s

For simplicity, only two-argument functions and applications are present in this language. When we write
down the SOS for this language, we encounter the small difficulty that in the substitution-based model we
have been using, terms that are not legal in the source language will appear because of substitution. For the
purposes of the operational semantics, we have a language similar to that described in class:

e ::= fn(x1, x2) s | x | halt

s ::= e1(e2, e3) | let x = e in s

with the usual evaluation rules

(fn(x1, x2) s)(e1, e2) → s{e1/x1, e2/x2}
let x = e in s → s{e/x}

However, we will consider a program well-formed only if it is closed and conforms to the first syntax
above.

a. (10 pts.) Provide a definitional semantics for the call-by-value lambda calculus in terms of this more
primitive CPS language.

Here is a from the lambda calculus to the simple CPS language. Note that the continuation k that is the
second argument to D is always a variable name.

T [[e]] = let h = halt in D[[e]]h
D[[x]]k = k(x, x) (The second x is a dummy)

D[[λ x e]]k = let f = (fn(x, k′) D[[e]]k′) in k(f, f) (where f, k′ ∈ FV (e) ∪ {k})
D[[e1 e2]]k = let k1 = (fn(f, d)

let k2 = (fn(v, d) f(v, k)) in D[[e2]]k2

) in D[[e1]]k1 (where k1, k2 ∈ FV (e1) ∪ FV (e2) ∪ {k})

b. (10 pts.) Expanding the language syntax in order to write the operational semantics is somewhat an-
noying. An alternative is to use an explicit substitution model, in which the substitutions in force (essentially,
the current set of variable bindings) are represented explicitly. In this approach, the operational semantics
configuration takes the form (γ, s), where γ is a map from variables to expressions e. Any free variables in
s must necessarily be mapped by γ. The final configuration of the program has the form (γ, x0 x1 x2) and
we will consider x1 substituted by γ to be the result of the program.

Write the evaluation rules for function application and let in the explicit substitution semantics. (Hint:
the environments we have been using in denotational semantics are essentially explicit substitutions.)

The problem statement was somewhat misleading because we need the environment γ to be a map from
variables to closures to get the right semantics. A closure is a pair of an environment and an expression
(γ, e) such that γ tells how to interpret all free variables in e. With γ of this form, we obtain the following
rules in which, as desired, we never use the substitution operator, and hence never obtain any expressions
not in the language:

(γ, let x = halt in s) → (γ[x �→ halt], s)

(γ, let x = e in s) → (γ[x �→ (γ, e)], s) (e = halt)

γ(x0) = (γ′, (fn(x′1, x
′
2)s))

(γ, x0(x1, x2)) → (γ′[x′1 �→ γ(x1), x′2 �→ γ(x2)], s)
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The problem statement understandably tempted many of you into writing semantics similar to the follow-
ing:

(γ, let x = e in s) → (γ[x �→ e], s)

γ(x0) = (fn(x′1, x
′
2) s)

(γ, x0(x1, x2)) → (γ[x′1 �→ γ(x1), x′2 �→ γ(x2)], s)

Among the problems with this semantics is that the free variables in a function body are interpreted with
respect to the environment at the call site, not with respect to the lexical environment: it is dynamically
scoped. Because of the confusion arising from the problem statement, we were lenient in grading this problem.

c. (5 pts.) We’d like to determine that both the explicit substitution semantics and the usual semantics
given earlier agree with each other. How would you formally express the statement that these semantics
agree when a program terminates in both semantics? (You need not prove this statement.)

Suppose we define γ̂(s) and γ̂(e) to mean the substitution of all free variables in s and e respectively
according to γ. Let γ0 be the empty substitution. Then the two semantics agree on terminating computations
if:

s →∗ halt(e1, e2) ⇐⇒ ∃γ′, s′ . (γ0, s) →∗ (γ′, s′) ∧ γ̂′(s′) = halt(e1, e2)

This is all we were looking for in this problem, but we can define the functions γ̂(s) and γ̂(e) in terms of
γ as follows by induction on the structure of γ (viewed syntactically), s and e:

γ̂(x) = x if x ∈ dom(γ)
γ̂(x) = γ̂′(e) if γ(x) = (γ′, e)
γ̂(x) = halt if γ(x) = halt

γ̂(x0(x1, x2)) = γ̂(x0)(γ̂(x1), γ̂(x2))
γ̂(let x = e in s) = let x = γ̂(e) in γ̂′(s) (γ′ = γ without its mapping for x, if any)

γ̂(halt) = halt
γ̂(fn(x1, x2) s) = fn(x1, x2) γ̂′(s) (γ′ = γ without mappings for x1, x2)

4 Denotational semantics and continuations

In a sense, continuations are the goto construct of functional languages. In this problem, we will look at this
correspondence more carefully by defining a continuation-passing-style denotational semantics for a simple
assembly language with labels and conditional jumps.

Consider the following simple assembly language:

L ∈ Label
X, Y ∈ Loc

n ∈ Z

c ::= load n X | move X Y | inc X | dec X | label L | jz X L | c1 ; c2

A program c is a sequence of commands made up of constant loads, assignments (the destination is second
location), increments and decrements, labels, and conditional jumps on zero. Control “falls through” to the
next command in the sequence if a conditional branch is not taken. A program terminates after executing
the final command in the sequence. If the final command in the sequence is a conditional jump, the program
terminates when the conditional branch is not taken.
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For example, here is a program which computes the sum of the numbers from 1 to 5, storing the result
in location S:

load 0 Z ;
load 5 N ;
load 0 S ;
label L1 ;
jz N L4 ;
move N M ;
label L2 ;
jz M L3 ;
inc S ;
dec M ;
jz Z L2 ;
label L3 ;
dec N ;
jz Z L1 ;
label L4

Note that the target of a conditional jump can occur before or after the jump. In addition, we require all
assembly language programs to satisfy a well-formedness criteria. This criteria requires

1. all labels referenced as the target of a conditional jump must have a defining occurrence in a label
command

2. no label can have more than one defining occurrence in a label command

The denotation A[[c]] of a program will be defined as follows:

A[[c]] = (π2 (fix (λ〈ι, κ〉 ∈ Jump× Cont. C[[c]]〈ι, κ0〉))) σ0

κ0 = λσ ∈ Store. �σ�
σ0 = λX ∈ Loc. 0

The idea is that ι ∈ Jump maps labels to continuations; i.e., (ι L) is the continuation that continues from
label L. Consider ι as a jump table recording the address at which execution to resume after a jump. A
fixed-point is necessary because defining occurrences of a label can occur before or after a conditional jump
to that label.

C[[c]] takes a pair 〈ι, κ〉 where ι is an approximation of the final jump table and κ is the continuation
prepared to accept the result of evaluating c. C[[c]] returns a pair 〈ι′, κ′〉 where ι′ is a better approximation of
the final jump table and κ′ is the continuation which accepts a store σ, evaluates c using ι in σ, and passes
the resulting store σ′ to κ.

Note that

fix (λ〈ι, κ〉. C[[c]]〈ι, κ0〉) = 〈ιf , κf〉

such that 〈ιf , κf 〉 = C[[c]]〈ιf , κ0〉. Therefore, κf is the continuation which accepts a store σ, evaluates c using
ιf in σ, and passes the resulting store σ′ to κ0. Further, ιf corresponds to the final jump table, that is, the
jump table with perfect information mapping labels to continuations. Projecting out κf and applying it to
the initial store σ0 yields the denotation for the entire program.

a. (6 pts.) Complete the domain equations for the semantics for the assembly language.
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Jump = Label → Cont

Cont = Store → Answer

Store = Loc → Z

Answer = Store⊥

A[[c]] ∈ Answer

C[[c]] ∈ Jump× Cont → Jump× Cont

b. (10 pts.) Complete the following cases for C.

C[[load n X ]]〈ι, κ〉 = 〈ι, λσ ∈ Store. κ σ[X �→ n]〉

C[[move X Y ]]〈ι, κ〉 = 〈ι, λσ ∈ Store. κ σ[Y �→ σ(X)]〉

C[[inc X ]]〈ι, κ〉 = 〈ι, λσ ∈ Store. κ σ[X �→ σ(X) + 1]〉

C[[dec X ]]〈ι, κ〉 = 〈ι, λσ ∈ Store. κ σ[X �→ σ(X)− 1]〉

C[[label L]]〈ι, κ〉 = 〈ι[L �→ κ], κ〉

C[[jz X L]]〈ι, κ〉 = 〈ι, λσ ∈ Store. if σ(X) = 0 then (ι L) σ else κ σ〉

C[[c1 ; c2]]〈ι, κ〉 = C[[c1]] (C[[c2]]〈ι, κ〉)

c. (9 pts. total) Compute the denotations of the following programs. Be sure to show the key steps in
your reasoning.

i. (3 pt.) A[[inc X ]]

C[[inc X ]]〈ι, κ0〉
= 〈ι, λσ. κ0 σ[X �→ σ(X) + 1]〉

fix (λ〈ι, κ〉. C[[inc X ]]〈ι, κ0〉)
= fix (λ〈ι, κ〉. 〈ι, λσ. κ0 σ[X �→ σ(X) + 1]〉)
= 〈⊥Jump, λσ. κ0 σ[X �→ σ(X) + 1]〉

A[[inc X ]]
= (π2 (fix (λ〈ι, κ〉. C[[inc X ]]〈ι, κ0〉))) σ0

= (π2 〈⊥Jump, λσ. κ0 σ[X �→ σ(X) + 1]〉) σ0

= (λσ. κ0 σ[X �→ σ(X) + 1]) σ0

= κ0 σ0[X �→ σ0(X) + 1]
= κ0 σ0[X �→ 1]
= �σ0[X �→ 1]�

7



ii. (3 pts.) A[[jz Z L ; inc X ; label L]]

C[[jz Z L ; inc X ; label L]]〈ι, κ0〉
= C[[jz Z L]](C[[inc X ]](C[[label L]]〈ι, κ0〉))
= C[[jz Z L]](C[[inc X ]]〈ι[L �→ κ0], κ0〉)
= C[[jz Z L]]〈ι[L �→ κ0], λσ. κ0 σ[X �→ σ(X) + 1]〉
= 〈ι[L �→ κ0], λσ′. if σ′(Z) = 0

then (ι[L �→ κ0] L) σ′

else (λσ. κ0 σ[X �→ σ(X) + 1]) σ′〉

fix (λ〈ι, κ〉. C[[jz Z L ; inc X ; label L]]〈ι, κ0〉)
= fix (λ〈ι, κ〉. 〈ι[L �→ κ0], λσ′. if σ′(Z) = 0

then (ι[L �→ κ0] L) σ′

else (λσ. κ0 σ[X �→ σ(X) + 1]) σ′〉)
= 〈⊥Jump[L �→ κ0], λσ′. if σ′(Z) = 0

then (⊥Jump[L �→ κ0] L) σ′

else (λσ. κ0 σ[X �→ σ(X) + 1]) σ′〉

A[[jz Z L ; inc X ; label L]]
= (π2 (fix (λ〈ι, κ〉. C[[jz Z L ; inc X ; label L]]〈ι, κ0〉))) σ0

= (π2 〈⊥Jump[L �→ κ0], λσ′. if σ′(Z) = 0
then (⊥Jump[L �→ κ0] L) σ′

else (λσ. κ0 σ[X �→ σ(X) + 1]) σ′〉) σ0

= (λσ′. if σ′(Z) = 0
then (⊥Jump[L �→ κ0] L) σ′

else (λσ. κ0 σ[X �→ σ(X) + 1]) σ′) σ0

= if σ0(Z) = 0 then (⊥Jump[L �→ κ0] L) σ0 else (λσ. κ0 σ[X �→ σ(X) + 1]) σ0

= (⊥Jump[L �→ κ0] L) σ0

= κ0 σ0

= �σ0�
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iii. (3 pts.) A[[label L ; jz Z L]]

C[[label L ; jz Z L]]〈ι, κ0〉
= C[[label L]](C[[jz Z L]]〈ι, κ0〉)
= C[[label L]]〈ι, λσ. if σ(Z) = 0 then (ι L) σ else κ0 σ〉

=
〈

ι[L �→ λσ. if σ(Z) = 0 then (ι L) σ else κ0 σ],
λσ. if σ(Z) = 0 then (ι L) σ else κ0 σ

〉

fix (λ〈ι, κ〉. C[[label L ; jz Z L]]〈ι, κ0〉)

= fix

(
λ〈ι, κ0〉.

〈
ι[L �→ λσ. if σ(Z) = 0 then (ι L) σ else κ0 σ],
λσ. if σ(Z) = 0 then (ι L) σ else κ0 σ

〉)

= 〈ιf , λσ. if σ(Z) = 0 then (ιf L) σ else κ0 σ〉
where ιf = ⊥Jump[L �→ λσ. if σ(Z) = 0 then ⊥Cont σ else κ0 σ]

A[[label L ; jz Z L]]
= (π2 (fix (λ〈ι, κ〉. C[[label L ; jz Z L]]〈ι, κ0〉))) σ0

= (π2 〈ιf , if σ(Z) = 0 then (ιf L) σ else κ0 σ〉) σ0

= (λσ. if σ(Z) = 0 then (ιf L) σ else κ0 σ〉) σ0

= if σ0(Z) = 0 then (ιf L) σ0 else κ0 σ0

= (ιf L) σ0

= (⊥Jump[L �→ λσ. if σ(Z) = 0 then ⊥Cont σ else κ0 σ] L) σ0

= (λσ. if σ(Z) = 0 then ⊥Cont σ else κ0 σ) σ0

= if σ0(Z) = 0 then ⊥Cont σ0 else κ0 σ0

= ⊥Cont σ0

= ⊥Store⊥

d. (5 pts.) Explain why the following definition of A[[c]] does not yield the desired semantics:

A[[c]] = (π2 (fix (λ〈ι, κ〉 ∈ Jump× Cont. C[[c]]〈ι, κ〉))) σ0

Suppose we used the definition of A given above. Then,

fix (λ〈ι, κ〉. C[[c]]〈ι, κ〉) = 〈ιf , κf 〉

such that 〈ιf , κf 〉 = C[[c]]〈ιf , κf〉. Therefore, κf is the continuation which accepts a store σ, evaluates
c using ιf in σ, and passes the resulting store σ′ to κf . Hence, the semantics given by the definition
of A above correspond to a “looping program,” where the program is continually reevaluted in the store
which was produced in the previous evaluation. Thus, κf = ⊥Cont and every program has the denotation
⊥Store⊥, clearly not the desired semantics.
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