CS 611
Advanced Programming Languages
Andrew Myers
Cornell University
Lecture 20
Domain Constructions
17 Oct 01

Fixed points

- Denotational semantics for IMP rely on taking fixed point to define \mathcal{C} 【while】
- Fixed points occur in most language definitions: needed to deal with loops
- control flow loops: while
- data loops: recursive functions, recursive data structures, recursive types
- Only know how to find least fixed pts for continuous functions f
- Need easy way to ensure continuity
cS 611 Fall '01, Lecture 20 -- Andrew Myers, Cornell University
3

Administration

- Homework 3 due Friday
- Scribes needed

Meta-language

- Idea: define restricted language for expressing mathematical functions
- All functions expressible in this language are continuous
- Looks like a programming language (uF, ML)
- not executed: just mathematical notation
- can talk about non-termination!
- "evaluation" is lazy (vs. eager in ML)
- "typed" (vs. untyped in uF \& variants)

CS 611 Fall '01, Lecture 20 -- Andrew Myers, Cornell University 4

Lifting

- If D is a domain (for now: cpo), can "lift" by adding new bottom element to form pointed cpo D_{\perp}
- cpo defined by underlying set plus complete ordering relation ㄷ
- Elements of D_{\perp} are $\left\lfloor d_{i}\right\rfloor, \perp$ where $d_{i} \in D$
- Ordering relation:
$\left\lfloor d_{i}\right\rfloor \subseteq\left\lfloor d_{i}^{\prime}\right\rfloor \quad \Leftrightarrow \quad d_{i} \sqsubseteq d_{i}$ $\perp \subseteq\left\lfloor d_{i}\right\rfloor$
- Complete?

CS 611 Fall '01, Lecture 20 -- Andrew Myers, Cornell University

Discrete cpos

- Various discrete cpos: booleans (B), natural numbers (ω), integers (Z), \ldots
- Corresponding functions over discrete cpos exist: + : $\mathbf{Z} \times \mathbf{Z} \rightarrow \mathbf{Z}, \wedge: \mathbf{B} \times \mathbf{B} \rightarrow \mathbf{B}$
- Often want to lift discrete cpos to take fixed points; helpful to extend fcns to pointed cpos
- If $f \in D \rightarrow E$, then $f_{\perp} \in D_{\perp} \rightarrow E_{\perp}, f^{*} \in D_{\perp} \rightarrow E$ are $f_{\perp}=\lambda d \in D_{\perp}$. if $d=\perp$ then $\perp \operatorname{else} f(d)$
$f^{*}=\lambda d \in D_{\perp}$. if $d=\perp$ then \perp_{E} elsef (d) (if E pointed)
- $2+_{\perp} 2=4,3+_{\perp} \perp=\perp, ~ \perp \wedge_{\perp}$ true $=\perp$
- If f continuous, are f_{\perp}, f^{*} ?

CS 611 Fall '01, Lecture 20 -- Andrew Myers, Cornell University

Unit

- Simplest cpo: empty set (\varnothing)
- Next simplest: unit domain (U)
- single element: u
- ordering relation: reflexive
- complete: only directed set is $\{u\}$
- Used to represent computations that terminate but do not produce a value, argument for functions that need no argument
- Also building block for other domains

CPO?

- Is product domain a cpo if D_{1}, D_{2} are?
- Any chain $\left\langle d_{0}, d^{\prime}{ }_{0}\right\rangle \sqsubseteq\left\langle d_{1}, d_{1}^{\prime}\right\rangle \sqsubseteq\left\langle d_{2}, d_{2}^{\prime}\right\rangle \sqsubseteq \ldots$ must have LUB in $D_{1} \times D_{2}$
- Definition of $\sqsubseteq: d_{0} \sqsubseteq d_{1} \sqsubseteq d_{2} \sqsubseteq \ldots$ is chain in $D_{1}, d_{0}^{\prime} \sqsubseteq d_{1}^{\prime} \sqsubseteq d^{\prime}{ }_{2} \sqsubseteq \ldots$ is chain in D_{2}
- LUB is $\sqcup\left\langle d_{n}, d_{n}^{\prime}\right\rangle=\left\langle\sqcup d_{n}, \sqcup d_{n}^{\prime}\right\rangle$
- Operations continuous?

$$
\begin{aligned}
& \pi_{i} \sqcup \bigsqcup_{n \in \omega} x_{n}=\sqcup \pi_{i} x_{n}=\sqcup d_{i n} \\
& \sqcup\left\langle x_{1 n}, \ldots, x_{m n}\right\rangle=\left\langle\sqcup d_{1 n}, \ldots, \sqcup d_{m n}\right\rangle
\end{aligned}
$$

Products

- If D_{1}, D_{2} are domains, then $D_{1} \times D_{2}$ is a product domain
- Underlying set: pairs $\left\langle d_{1}, d_{2}\right\rangle$ where $d_{\mathrm{i}} \in D_{\mathrm{i}}$
- Ordering:
$\left\langle d_{1}, d_{2}\right\rangle \sqsubseteq\left\langle d_{1}^{\prime}, d_{2}^{\prime}\right\rangle$ iff $d_{1} \sqsubseteq d_{1}^{\prime} \& d_{2} \sqsubseteq d_{2}^{\prime}$
- Extends to n-tuples
- Operations:

- tupling: $\left\langle d_{1}, \ldots, d_{m}\right\rangle$
- projection: $\pi_{i}\left\langle d_{1}, \ldots, d_{m}\right\rangle=d_{i}$

CS 611 Fall '01, Lecture 20 -- Andrew Myers, Cornell University 10

Sums

- Sometimes want to allow values of one kind or another: $D_{1}+D_{2}$
- Elements of domain are elements of D_{1} or D_{2} tagged with origin: $\left\{i n_{i}(d) \mid d \in D_{i}\right\}$

- Form of $i n_{\mathrm{i}}$ is irrelevant (could be $\lambda d .\langle i, d\rangle$)
- Preserves ordering of individual domains: $i n_{i}(d) \sqsubseteq i n_{j}\left(d^{\prime}\right)$ iff $i=j, d \sqsubseteq d^{\prime}$
- Injection function $i n_{i}$ is continuous
- Extends naturally to multi-domain sum
- not pointed

CS 611 Fall '01, Lecture 20 -- Andrew Myers, Cornell University

Sums, cont'd

- Why tag? Distinguishes identical domains $-\mathbf{B}=\mathbf{U}+\mathbf{U}$, true $=i i_{1}(\mathrm{u})$, false $=i i_{2}(\mathrm{U})$
- Sums unpacked with case construction:
case e of $i n_{i}\left(x_{1}\right) \cdot e_{1} \mid i n_{i}\left(x_{2}\right) \cdot e_{2} \quad$ or: case of $D_{1}\left(x_{1}\right) \cdot e_{1} \mid D_{2}\left(x_{2}\right) \cdot e_{2}$
- Given $e=i n_{i}\left(d_{i}\right)$, has value $f_{i}\left(d_{i}\right) \in E$ where $f_{i} \in D_{i} \rightarrow E=\left(\lambda x_{i} \in D_{i} . e_{i}\right)$
- Continuous function of e if all f_{i} continuous:
\sqcup case e_{n} of $\ldots=$ case $\sqcup e_{n}$ of ... ?

$$
\sqcup f_{i}\left(d_{i n}\right)=f_{i}\left(\sqcup d_{i n}\right)
$$

- Also continuous function of each f_{i} \sqcup case e of $f_{1 n} \mid f_{2}=$ case e of $\sqcup f_{1 n} \mid f_{2}=\bigsqcup f_{1 n}\left(d_{1}\right)$
CS 611 Fall ' 01 , Lecture 20 -- Andrew Myers, Cornell University

Continuous functions

- Given cpos D, E, define $D \rightarrow E$ as domain of continuous functions mapping D to E (subset of E^{D})
- Pointwise ordering: $f \sqsubseteq g$ iff $f(d) \sqsubseteq g(d)$
- Complete?
$\left.\sqcup_{n \in \omega} f_{n}=\lambda d \in D . \sqcup_{n \in \omega} f_{n}(d)\right\}$ continuous?

$$
\begin{aligned}
& \left(\lambda d \in D . \sqcup_{n \in \omega} f_{n}(d)\right)\left(\sqcup_{m \in \omega} d_{m}\right)= \\
& \quad \sqcup_{m \in \omega}\left(\lambda d \in D . \sqcup_{n \in \omega} f_{n}(d)\right)\left(d_{m}\right) ?
\end{aligned}
$$

Continuity of LUB

$$
\begin{aligned}
& \left(\lambda d \in D . \sqcup_{n \in \omega} f_{n}(d)\right)\left(\bigsqcup_{m \in \omega} d_{m}\right)= \\
& \sqcup_{m \in \omega}\left(\lambda d \in D \cdot \sqcup_{n \in \omega} f_{n}(d)\right)\left(d_{m}\right) ? \\
= & \sqcup_{n \in \omega} f_{n}\left(\sqcup_{m \in \omega} d_{m}\right) \\
= & \sqcup_{n \in \omega} \sqcup_{m \in \omega} f_{n}\left(d_{m}\right) \quad \square \quad \begin{array}{l}
\text { need exchange } \\
\text { lemma }
\end{array} \\
= & \sqcup_{n \in \omega} f_{n}\left(d_{n}\right) \\
= & \sqcup_{m \in \omega} \sqcup_{n \in \omega} f_{n}\left(d_{m}\right) \\
= & \sqcup_{m \in \omega}\left(\lambda d \in D . \sqcup_{n \in \omega} f_{n}(d)\right)\left(d_{m}\right)
\end{aligned}
$$

Exchange Lemma

$$
\begin{aligned}
& \sqcup_{n} \sqcup_{m} f_{n}\left(d_{m}\right)=\sqcup_{n} f_{n}\left(d_{n}\right)=\sqcup_{m} \sqcup_{n} f_{n}\left(d_{m}\right) \\
& \text { Let } e_{n m}=f_{n}\left(d_{m}\right) \\
& n \leq n^{\prime}, m \leq m^{\prime} \Rightarrow e_{n m} \sqsubseteq e_{n^{\prime} m^{\prime}} \\
& \text { Lemma holds for any } \\
& \text { such } e_{n m} \\
& e_{n n} \sqsubseteq \sqcup_{m} e_{n m} \text {, so } \sqcup_{n} e_{n n} \sqsubseteq \sqcup_{n} \sqcup_{m} e_{n m}, \sqcup_{m} \sqcup_{n} e_{n m} \\
& \sqcup_{n} e_{n m} \sqsubseteq \sqcup_{n} e_{n n}, \text { so } \sqcup_{m} \sqcup_{n} e_{n m} \sqsubseteq \sqcup_{n} e_{n n}
\end{aligned}
$$

CS 611 Fall '01, Lecture 20 -- Andrew Myers, Cornell University
16

Meta-Language

- Have defined various constructs that we can use to define continuous functions
- Constructs are a syntax for a meta-language in which only continuous functions can be defined
- How do we know when expression λx.e is continuous?
- Idea: use structural induction on form of e so every syntacally valid e can be abstracted over any variable to produce continuous function
- Problem: structural induction \Rightarrow need to consider open terms e
CS 611 Fall '01, Lecture 20 -- Andrew Myers, Cornell University

Continuity in variables

- Idea: consider a meta-language expression e to be implicitly function of its free variables
- e is continuous in variable x if $\lambda x . e$ is continuous for arbitrary values of other (non-x) free variables in e
- e is continuous in variables not free in e
- structural induction: for each syntactic form, show that term is continuous in variables assuming sub-terms are

