
CS611 Lecture 39 Module Types 3 December 2001
Scribe: Yan Zhang and Antonio Montalban Lecturer: Andrew Myers

1 Review of existential types

In the previous class we defined the existential type ∃X.σ, where X is a type variable that may appears free
σ. We have the constructor pack∃X.σ[τ, e], and the destructor unpack e1 as [Y, x] in e2. The new rule is

unpack (pack∃X.σ[τ, v]) as [Y, τ] in e2 �→ e2{τ/Y, v/x}

Observe that the rule has no computational content. We could erase the types and get the same results.

2 Typing Rules

We extend the definition of being a well-formed type, ∆ � σ, where ∆ is a set of variables, by adding a new
rule:

∆, X � τ

∆ � ∃X.τ

And we extend the definition of being a well-typed term, ∆; Γ � e : τ , where Γ ∈ Var ⇀ Type, by adding
two new rules:

∆; Γ � e{τ/X} : σ{τ/X} ∆ � τ

∆;Γ � pack∃X.σ[τ, e] : ∃X.σ

∆;Γ � e1 : ∃X.σ1 ∆, Y ; Γ, x : σ1{Y/X} � e2 : σ2 ∆ � σ2 Y �∈ ∆
∆;Γ � unpack e1 as [Y, x] in e2 : σ2

These correspond, through the Curry-Howard isomorphism, with the followings rules of logic:

∆; Γ � φ{A/X} ∆ � A ∈ S

∆;Γ � ∃X ∈ S.φ
∃ introduction

∆;Γ � ∃X ∈ S.φ1 ∆, Y ; Γ, φ1{Y/X} � φ2 ∆ � φ2 Y �∈ ∆
∆;Γ � φ2

∃ elimination

3 Module Types

One thing we can do with the existential types is to model modules. First we define an extension of λ→ that
supports modules. We extend the definition of types as follows:

τ ::= ... | interface {type X1, ..., Xm; val x1 : τ1, ..., xn : τn} | e.X

The interface type is not as the Java’s interface, it is like the Modula 3’s interface and like what in ML
is called sig. The types X1, ..., Xm are abstract types; we don’t know the actual identities of them. The type
e.X is a dependent type, because it depends on a term, so its value is decided at runtime.
We extend the set of expressions as follows

e ::= ... | module {type X1 = τ1, ..., Xm = τm; val x1 = e1, ..., xn = en} | e.x

Now we can abstract data types in a satisfactory way.

1

4 Examples

We define a module that implements rationals:

ratint ≡ interface{type T ;
val create : int ∗ int → T

add : T ∗ T → T }

let ratmod = module{type=int ∗ int;
val create = λp, q : int.〈p, q〉,

add = λr1, r2 : T.〈left r1 ∗ right r2 + left r2 ∗ right r1, right r1 ∗ right r2}
in ratmod.add (ratmod.create〈1, 2〉)(ratmod.create〈3, 4〉)
: ratmod.T

We could have defined some other functions inside the module without exporting them. For example we
could have defined a function gcd, that returns the greater common divisor of two numbers, and used it in
the definition of add.
Now, we consider the same example but using existential type instead of module types.

ratint ≡ ∃T.{create : int ∗ int → T,
add : T ∗ T → T }

let ratmod = packratint[int ∗ int, {create = ...,
add = ...}]

in unpack ratmod as [ratmod T, ratmod V] in 〈program〉

Consider another example from last time:

class intset{
intset union (intsets);
bool contains (int);
intset left, right;
int val;

}

Use existential type language, this becomes

intset ≡ µS.∃P}union : S → S,
contains : int → bool,
fields : P
}

We can create an intset as follows:

foldintsetpack∃P.{union:S→S,contains:int→bool,fields:P}rec this.{fields = {left = .., right = .. : intset, val = .. : int},
contains = ...this.fields.left...,
union =λs : intset.

unpack (unfold s) as [P ′, s′] in...}

There is a problem when we try to define union. The problem is that union receives s of type intset, but
we don’t know how the implementation of intset is in the definition of s, so we cannot access what is inside
fields.
To solve this problem we can use strong existential types.

2

5 Strong Existential Types

We have been looking at weak existential types. We can extend it as strong existential types by adding
terms as:

σ ::= ... | ∃X.σ | e.X

e ::= ... | pack∃X,σ[τ, e] | unpack e1 as [Y, x] in e2 | e.V

Here the term e.X is called dependent type, as the one we had with Module Types.
Now the judgment that asserts that a type is well-formed has to have the form

∆;Γ � σ

because σ may depend on a term.
The inference rule for this term is:

∆, X ; Γ � σ ∆;Γ � e : ∃X.σ

∆;Γ � e.X

Observe that to check that e.X is well-formed we have to type-check the expression e.

The rule for pack remains same as before, but the rule for unpack is changed as:

∆; Γ � e1 : ∃X.σ1 ∆, Y ; Γ, x : σ1 � e2 : σ2 Y /∈ ∆
∆;Γ � unpack e1 as [Y, x] in e2 : σ2{e1.X/Y }

Here we don’t need ∆ � σ2 since the hidden type can be talked about with the extended typing rules.
The problem we have now is that if we implement some type in two different ways they are considered

different types.

Let’s consider the following example:

let p1 = pack∃X.X∗(X→bool)[int, 〈2, λn.n = 2〉] in
let p2 = pack∃X.X∗(X→bool)[bool, 〈#t, λb.b〉] in

let v = unpack p1 as [Y, x] in left x
in f = unpack p2 as [Y, x] in right x
in f v

In weak existential types, we are not allowed to write like this. This is because we don’t know anything
about the hidden type. But if we introduce the strong existential types (which are called generalized sum
types, as in Mitchell), we have the dependent type term e.X , in this example, which corresponds to p1.X
and p2.X . After substituting Y by p1.X and p2.X respectively and type-checking, we find out f has type
p2.X → bool but v has type p1.X . So the code above is wrong since it doesn’t type checks right. But if we
change the code as:

let p1 = pack∃X.X∗(X→bool)[int, 〈2, λn.n = 2〉] in
let p2 = pack∃X.X∗(X→bool)[bool, 〈#t, λb.b〉] in

let v = unpack p1 as [Y, x] in left x
in f = unpack p1 as [Y, x] in right x
in f v

Now f has new type p1.X → bool and v has type p1.X , so the above code is valid under type-checking.
But we notice this only works under strong existential types, for weak existential still doesn’t allow us to do
this.

3

