
CS611 Lecture 38 Subtyping, existential types 11/30/01
Scribe: Hubert Chao and Dennis Yeh Lecturer: Andrew Myers

1 Introduction

From the previous lecture, we have the subtyping judgement ` τ ≤ τ ′ and the subsumption rule

Γ ` e : τ ` τ ≤ τ ′
Γ ` e : τ ′

We can also think of the subtyping judgement as a statement about type inclusion:
τ ≤ τ ′ ⇔ T [[τ ]] ⊆ T [[τ ′]]

Ultimately, our goal is to model object-oriented languages. Specifically, we need some way to model type
hierarchies like the following:

Vehicle
/ \

Car Truck
/

Sedan

In OCaml, we might implement this as

type Vehicle : Car of ... \\
| Truck of ...

and use the type Vehicle like this:

let v: Vehicle = ...
in nWheels =

case v of Car -> 4
| Truck -> 18
...

Adding subtypes will be cumbersome: for each subtype we add, we’ll have to manually add a clause to
each method of the supertype. Our subtyping model should provide more extensibility.

Another way of thinking about the type inclusion relationship is “τ is inhabited” ⇒ “τ ′ is inhabited”, or
put another way, (φ ⇒ φ′) where φ is the assertion that τ is inhabited and φ′ the corresponding assertion
for τ ′. According to the Curry-Howard isomorphism, this leads us to suspect the existence of a term of type
(τ → τ ′), which we will call a coercion function from τ to τ ′. This leads to an alternate, simpler way of
interpreting the subtype relation on two types that is based on coercion rather than on type inclusion. The
coercion function interpretation allows us to interpret types as underlying semantic domains in the same
way that we did before subtyping was introduced.

2 Coercion function

We can also define a new operator Θ, which is a coercion from one type to another. For example, Θ[[` τ ≤ τ ′]]
is a coercion from type τ to type τ ′. Using this, we can replace uses of the subsumption rule in typing proofs.
So if we see

Γ ` e : τ ′′ ` τ ′′ ≤ τ ′
Γ ` e : τ ′

in the proof tree of Γ ` e0 : τ , we can replace the use of the subsumption rule with a typing of an
application of a coercion function:
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Γ ` e′ : τ ′ ` Θ[[τ ′ ≤ τ ′′]] : τ ′ → τ ′′

Γ ` Θ[[τ ′ ≤ τ ′′]]e′ : τ ′′

Note that e′0 is the same as e0 but with the possible use of coercions inside.
We can define the coercion rules as follows:

Θ[[τ ≤ τ ]] = λx : τ.x

Θ
[[
τ ≤ τ ′′ τ ′′ ≤ τ ′

τ ≤ τ ′
]]

= λx : τ.Θ[[τ ′′ ≤ τ ′]](Θ[[τ ≤ τ ′′]]x)

Θ[[τ ≤ #u]] = λx : τ.#u
Θ[[{l1 : τ1...lm : τm} ≤ {l1 : τ1...ln : τn}]] = λx : {l1 : τ1...lmτm}.{l1 = x.l1...ln = x.ln} (where m ≥ n)

Θ[[{l1 : τ1...lm : τm} ≤ {l1 : τ ′1...lm : τ ′m}]] = λx : {l1 : τ1...lmτm}.{l1 = Θ[[τ1 → τ ′1]]x.l1...}

Θ
[[
τ1 ≤ τ ′1 τ ′2 ≤ τ2
τ1 → τ2 ≤ τ ′1 → τ ′2

]]
= λf : τ1 → τ2.λy : τ ′1Θ[[τ2 ≤ τ ′2]](f(Θ[[τ ′1 ≤ τ1]]y))

3 Objects and Classes

With our typing model complete, we’ll now begin to explore objects and classes. Consider the following Java
implementation of integer sets:

class intset {
intset union(intset S);
boolean contains(int);
int value;
intset left,right;

}

With recursive types and records we can translate this implementation to lambda calculus :

intset = µS.{union : S → S, contains : int→ bool, value : int, left, right : S + 1}

A program using this definition would probably include code that looked like the following:

let s = foldintset (rec this: { union : intset → intset, ... } .
{ union = λ s’ : intset . ....
, contains = λ n : int . if n = this.value then #t

else if m 〈 this.value
then case this.left of

#u . #f
s’ . ((unfold s’).contains) n

.

.

.

But this implementation is inadequate. The internals of the class are fully exposed to any other objects
or functions that might use it. We need some way of providing a restricted interface to our objects and
classes.

4 Encapsulation/Information Hiding

While we can encode objects currently, we are missing one of the key concepts of Object Oriented program-
ming, which is information hiding. We can encode this with use of existential types, which again map closely
to the mathematical equivalent by the Curry-Howard Isomorphism. Basically, ∃X.τ ⇔ ∃X.φ.
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The idea is that there exists some type X such that we can make something look like τ . The type X then
becomes the information that we want to hide. To hide information, we define a new construct: [τ, v] : ∃X.σ
where v : σ{τ/X}. We also introduce two new operators which work on this construct, pack and unpack.

pack∃X.σ[τ, e] (introduction form)
unpack e1 as [Y, x] in e2 (elimination form)

unpack (pack∃X.σ[τ, e]) as [Y, x] in e2 7−→ e2{τ/Y, v/x}

unpack is similar to a let expression where τ is bound to Y and e is bound to x. In this way, the actual
type is hidden within τ . Then in the unpack expression Y provides the interface to the hidden type which
won’t affect evaluation.

Evaluation contexts are extended in the obvious way for pack and unpack:

C ::= ... | pack∃X.σ[τ, C] | unpack C as [Y, x] in e2

In the following simple integer object example, the integer type is packed into X; the code in the unpack
expression is able to operate on the integer and the int→bool function, without knowing they are of those
types. We need only think of (π1 x) as having type Y. p has the existential type ∃X.X * (X→bool):

let p = pack∃X.X∗(X→bool)[int, 〈5, λz : int. (z = 4)〉] in
unpack p as [T, x] in (π2 x) (π1 x)
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