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1 Curry-Howard Isomorphism (a.k.a. formulas-as-types)
1.1 History

In 1968, Mathematician William Howard, building on work by Haskel Curry, identified a one-to-one relation-
ship between propositional formulas and logical proofs to types and programs respectively. More genreally,
it was noticed that logical ideas have computational significance. This idea became known, rather naturally,
as the Curry-Howard Isomorphism.

1.2 Logical Formulas

Here we define the form of the logical expressions we will use in our exploration of the Curry-Howard
Isomorphism
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1.3 Proof Rules

Now that we have our logical formulas, we need a way to prove any logical assertion. And so we define proof
rules.
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2 Constructive Logic (a.k.a. Intuitionistic)

In Constructive Logic one needs to prove a logical formula is true by proving it is true, not by proving the
negation is false (proof by contradiction). While the latter might be perfectly acceptable in classical logic,
that method cannot be used in the Constructive logic system. So the following classical logic proof rules are
not found in Constructive logic:
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For an =, we assume the hypothesis to be true and need to prove the consequence.



3 Natural Deduction

In 1934 Gerhard Getzen introduced Natural deduction. This proof method uses a list of assumptions to
come upon a conclusion: ¢1, ..., ¢, F ¢ . That is we assert that ¢ is true based upon the assumption that
@1, ..., O are all true. We call the set of assumptions, ¢1, ..., ¢y, .

We need to stick I' into the logical proof rules we defined above, which would result in:
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We now provide a proof to illustrate the application of the proof rules; here is the proof of transitivity of
implications:
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The proof tree for logical formulas, I' F ¢, looks like that for typing, I' F e : 7. If we look closer to the
each of the logical proof rules, we can find a corresponding one in the typing proof rules, e.g.:
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4  The Curry-Howard Isomorphism

We notice the following isomorphism between logical rules and typing rules.
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Under this isomorphism, since - ¢ < F e:7, if a statement is logically derivable then there is a program
and a value of type 7. We say that 7 is inhabited if you can construct a value of that type (it is possible to
construct types for which no values exist; these types are uninhabited)

Since the proof is encoded in the structure of the term itself, it turns out that this is very useful for proof
carrying code.

5 Logical Tautologies

Several well-known logical tautologies have interesting interpretations under this isomorphism. For example,
(ANB = C) < (A= B = C) becomes

Ax B — C=A— B — C which is a statement about currying and uncurrying.

Also, deMorgan’s law, AA B < —(—AV —B) suggests that there is a way to encode sums using products
and vice versa.

Lastly, double negation translates to 7 = (7 — 0) — 0 is continuation passing under the isomorphism:
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