
CS611 Lecture 32 Isorecursive Types 14th November, 2001
Scribe: Lin Guo, Feng Shao Lecturer: Andrew Myers

1 Type Equivalence

1.1 Introduction

In the C language, we can use the typedef command to get equivalent types as follows:

typedef int foo ⇒ foo ∼= int

which means foo and int indicate the same type. So the two types can be used interchangeably, e.g.:

foo x; int y; x = y;

In other words, foo is an alias for the type int. On the other hand, two types can be equivalent based on
their structure. For example, in ML we have:

{x: int, y: int}∼= {y: int, x: int}

This equation tells us the order in the record structure is unimportant, which makes sense since we get the
element of a record by a term like e.x, which has nothing to do with the order of the fields. For implementation
reasons, similar types in many languages(e.g. C) are not considered equivalent.

1.2 Type equivalence proof system

In general, there are multiple ways to write a single type. Thus it is important to determine when type
expressions τ1 and τ2 represent the same type, which is written as � τ1 ∼= τ2. The typing rule that allows us
to make use of equivalence is this:

Γ � e : τ1 � τ1 ∼= τ2
Γ � e : τ2

(equiv)

This means if e has type τ1 and τ1 and τ2 are equivalent types, then e is also has type τ2 in the same context.
To obtain a complete type equivalence system, we need other rules:

� τ ∼= τ
� τ ′ ∼= τ

� τ ∼= τ ′
� τ1 ∼= τ2 � τ2 ∼= τ3

� τ1 ∼= τ3
(equivalence rules)

� τ1 ∼= τ ′1 � τ2 ∼= τ ′2
� τ1 ∗ τ2 ∼= τ ′1 ∗ τ ′2

� τ1 ∼= τ ′1 � τ2 ∼= τ ′2
� τ1 + τ2 ∼= τ ′1 + τ ′2

� τ1 ∼= τ ′1 � τ2 ∼= τ ′2
� τ1 → τ2 ∼= τ ′1 → τ ′2

(congruence rules)

1.3 Name vs. Structural equivalence

There are two kinds of type equivalence: name equivalence and structural equivalence. For example, C has
name equivalence, so

struct foo{int x; int y} �∼= struct bar{int z; int w}

This is because the name of a particular data structure is part of its type identity in C and obviously the
name foo �= the name bar. So even if we redefine structure bar like:

struct bar{int x; int y}

The above inequation also holds.
C also allows you write a data structure without an explicit name, like struct {int x; int y}. But in fact, the
compiler will fabricate a new hidden name for this structure that makes it different from every other struct.
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We say struct in C is a generative type constructor because each use of struct generates a new hidden
name that defines the identity of the type. Thus, with:

typedef struct{int x} foo;
typedef struct{int x} bar;

typedef foo baz;

We have foo∼=baz but foo �∼=bar�∼=baz.
Modula-3 has completely structural equivalence. For example:

TYPE foo = {x : int, y : int}
TYPE bar = {x : int, y : int}

Then foo and bar are equivalent types. To achieve the effect of name equivalence in Modula-3, one can give
a type a unique identity using the type constructor BRANDED. If we modify the definition of foo and bar as
follows:

TYPE foo = BRANDED{x : int, y : int}
TYPE bar = BRANDED{x : int, y : int}

Then foo �∼=bar because BRANDED is generative.

1.4 An example of structural equivalence

For an example of nontrival equivalent types, we can imagine extending our type system with an axiom
� (τ1 ∗ τ2)→ τ3 ∼= τ1 → (τ2 → τ3). This would let us curry functions in λ→, e.g.:

let f = λx:int. λy:int.e in f〈1,2〉
and

let f = λx:int.λy:int.e in f(left e)(right e)

would be two ways to write the same function.
In fact, even if we have no such type equivalence system (or no such rule), we can transform a lambda term
e : τ1 → (τ2 → τ3) to a term e′ : (τ1 ∗ τ2)→ τ3 using the function uncurry and the typing derivation. Recall
the definition of uncurry and curry:

uncurryτ1,τ2,τ3
= λf : τ1 → (τ2 → τ3).λp : τ1 ∗ τ2.f(left p)(right p)

curryτ1,τ2,τ3
= λf : (τ1 ∗ τ2)→ τ3.λg : τ1.λh : τ2.f(g, h)

1.5 Equivalence and type-directed translations

One way to justify the soundness of a type system extension such as type equivalence is to show that we
can translate well-typed terms in the extended type system into well-typed terms in a simpler type system.
This is done by giving a translation from source type derivations to target type derivations. Thus, the
translations have the same flavor as our denotational semantics for typed languages, but the target will
be a typed programming language rather than mathematical objects. A type-directed translation will in
general consist of a type translation T [[τ ]] = τ ′ that tells how to translate source types into target types
and a translation [[Γ � e : τ ]] = e′ that tells how to translate source type derivations into target derivations.
C[[Γ � e : τ ]] has the form Γ′ � e′ : T [[τ ]], but typically we don’t bother to write down the typing derivation
for the target-language term, just the term e′ itself. We also define a function G[[Γ]] that translates a valid
typing context Γ to a valid target-language typing context Γ′ by simply mapping all the types in the context
using T [[·]].

For example, we can define a type-directed translation from the lambda calculus to itself as follows:
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T [[B]] = B

T [[τ → τ ′]] = T [[τ ]] → T [[τ ′]]
G[[x1 :τ1, . . . , xn :τn]] = x1 :T [[τ1]], . . . xn :T [[τn]]

[[
� Γ

Γ, x :τ � x : τ

]]
= x

(
i.e.,

� G[[Γ]]
G[[Γ]], x :T [[τ ]] � x : T [[τ ]]

)
[[
Γ � e0 : τ → τ ′ Γ � e1 : τ � Γ

Γ � e0 e1 :τ ′

]]
= [[Γ � e0 : τ → τ ′]] [[Γ � e1 : τ ]]

[[
Γ, x :τ � e : τ ′ � Γ
Γ � (λx :τ. e) :τ → τ ′

]]
= λx :T [[τ ]]. [[Γ, x :τ � e : τ ′]]

In this case the type and term translations are identity functions, but they have been expressed in a way that
allows them to be extended. Showing that this translation is correct involves more than the well-formedness
of the translated term, of course; we also want to show that the translation is sound and adequate; that is,
that operational evaluation of the source term mirrors operational evaluation of the target term. This can
be shown using techniques we have seen earlier in this course, such as logical relations. If the translation is
simple enough, one can appeal to simpler arguments.

Now let us consider how we might justify type equivalence via a typed translation. The essence of type
equivalence is the automatic generation of an isomorphism that witnesses the equivalence by showing how
to map back and forth. Therefore, for a given judgement � τ1 ∼= τ2, we can define a target-language function
I[[� τ1 ∼= τ2]] : T [[τ1]]→ T [[τ2]] that captures one half of the isomorphism pair, and a corresponding function
I†[[� τ1 ∼= τ2]] : T [[τ2]] → T [[τ1]] that captures the other half. Given the function I, we can extend the
type-directed translation above in a generic way to capture use of the type equivalence rule (equiv); this
corresponds to a compiler automatically introducing some coercion code I[[� τ1 ∼= τ2]] to convert the value
of type τ1 to the type τ2.

[[
Γ � e : τ1 � τ1 ∼= τ2

Γ � e : τ2

]]
= I[[� τ1 ∼= τ2]] [[Γ � e : τ1]] : T [[τ2]]

The conversion functions I[[·]] are straighforward; as we’ve just observed, curry and uncurry witness the
equivalence used in our example:

I[[� τ1 → (τ2 → τ3) ∼= (τ1 ∗ τ2)→ τ3]] = uncurryτ1,τ2,τ3

I[[� (τ1 ∗ τ2)→ τ3 ∼= τ1 → (τ2 → τ3)]] = curryτ1,τ2,τ3

Defining the action of the type conversion function I[[·]] by induction on the derivation of type equivalence
rules is straightforward for the basic rules that capture the congruence properties of ∼=; the rest of the
definition follows naturally.

I[[� τ ∼= τ ]] = I†[[� τ ∼= τ ]] = λx :T [[τ ]]. x

I
[[
� τ ′ ∼= τ
� τ ∼= τ ′

]]
= I†[[� τ ′ ∼= τ ]]

I
[[ � τ1 ∼= τ2 � τ2 ∼= τ3

� τ1 ∼= τ3

]]
= λx :T [[τ1 → τ3]]. [[� τ2 ∼= τ3]] ([[� τ1 ∼= τ2]] x)

I
[[ � τ1 ∼= τ ′1 � τ2 ∼= τ ′2
� τ1 → τ2 ∼= τ ′1 → τ ′2

]]
= λx :T [[τ1 → τ2]]. λy :T [[τ ′1]]. I[[� τ2 ∼= τ ′2]] (x (I†[[� τ1 ∼= τ ′1]] y))
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2 Recursive Types

At present, our simple type system has the limitation that it cannot describe such type structures that may
grow to arbitrary size, but that have a simple, regular structure. The following are two infinite-shape types
for List

List1 = 1 + τ + τ × τ + τ × τ × τ + ...

List2 = 1 + (τ × (1 + τ × (1 + ...)))

There are other examples in actual programming languages,

in ML : type Alist = empty | full of A ∗ Alist

in C : struct Alist { A elem; struct ∗ Alist; }

So we need a general mechanism with which they can be defined from simpler elements, as needed. This
mechanism is recursive types.

Consider the recursive equation specifying the infinite type Alist in a Modula-3 like language:

type Alist = ref{elem : A , next : Alist}

It is similar to the equation specifying the recursive factorial function. We can unfold it to get Alist2,

type Alist2 = ref { elem : A , next : ref{ elem A , next Alist} }

Alist and Alist2 are describing the same type shape: Alist ∼= Alist2 ∼= 1 +A× (1 +A× (1 + ...)).
Define Alist ≡ τ and a function F(τ) = 1 + A × τ . Because τ ∼= 1 + A × τ , we have F(τ) ∼= τ . This

means τ is a fixed point of F !. Here, as there, it is convenient to make the equation of Alist into a proper
definition by introducing an explicit recursion operator µ for types.

2.1 Recursive Type Operator

We use µX.τ to denote the solution to X ∼= τ where τ may mention X . (Here X is a type variable.) Using
it, Alist ≡ µX.1 +A×X . Similarly, we can define many other types such as binary tree of integers and the
natural numbers:

Binary tree of integers : IntT ree ≡ µT. Int+ T × T (IntT ree ∼= Int+ IntT ree× IntT ree)
Natural Numbers : Nat ≡ µN. 1 +N (Nat ∼= 1 +Nat)

0 ≡ inl(#u)
1 ≡ inr(inl(#u))
2 ≡ inr(inr(inl(#u)))

...

succ : Nat → Nat ≡ λn : Nat. inr(n)

2.2 Open and Closed Recursion

The µ operator introduces closed recursion: the new type variable X can only be mentioned in the scope
of µX.τ . In many languages, types are allowed to refer to one another arbitrarily. Open recursion occurs
when the type expression is not closed. Open recursion requires taking a fixed point over all types in scope.
For example, consider the following class definitions for Node and Edge.

Class Node{ Edge[ ] edges; }
Class Edge{ Node from, to; }
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Note that Node refers to Edge and vice versa. So, we must take a fixed point when assigning their types.
Thus, we have

Node = µN. array[N × N]
Edge = µE. (array[E]× array[E])× (array[E]× array[E])

Other mutually recursive types can b expressed using µ constructor similarly.

3 Fold and Unfold

By taking fixed points over types, we have created an issue of type equivalence in λ→∗+. The difficulty is
that we no longer have one unique syntactic form for a given type. Now if we suppose that µX.τ solves
X = τ , this suggests we can substitute µX.τ for X wherever it appears in τ . So, for the natural numbers,
we get µN. (1 +N) = µN.(1 + (µN.(1 +N) ) ) and Nat = (1 +Nat) = (1 + (1 +Nat) )

In order to develop a new formal definition of type equivalence, we will define the unfolding of type
µX.τ to be τ{µX.τ/X}. And, we will write µX.τ ∼= τ{µX. τ/X} to mean that µX.τ and its unfolding are
equivalent types. Implicitly, this gives us the following notion of equivalence: type expressions are equivalent
if they are fully substitutable for each other. A weaker notion of equivalence is that the types are isomorphic
and the expressions must be explicitly mapped between types.

It will be more straightforward for now if we consider a recursive type and its unfolding to be isomorphic
and explicitly shift values between the two types. In order to move between the recursive type µX.τ and the
corresponding unfolding τ{µX.τ/X}, we define two new operators named fold and unfold that witness the
isomorphism. We can consider them to have the following types:

foldµX.τ : τ{µX.τ/X} → µX.τ

unfoldµX.τ : µX.τ → τ{µX.τ/X}

The unfold operator is the elimination form that allows access to internals of value of recursive type; the
fold operator is the corresponding introduction form. The typing rules are:

Γ � e : τ{µX.τ/X}
Γ � foldµX.τ e : µX.τ

Γ � e : µX.τ

Γ � unfold e : τ{µX.τ/X}

We extend the language as follows:

τ ::= ... | µX.τ

e ::= ... | foldµX.τ e | unfold e

v ::= ... | foldµX.τ v

C ::= ... | fold C | unfold C

with the new reduction:
unfold(foldµX.τ v) �−→ v

As an example of using the typing and evaluation rules, we prove that Ω = (λx. x x) (λx. x x) can be
typed as α, where x : τ and x : τ → α. Let SA ≡ λx : τ (x x), we get that τ ∼= τ → α and µT. T → α is
solution to it. By unfolding,

(µT.T → α) =⇒ (µT.T → α)→ α

Then we get the following declarations to explicitly show the types of fold and unfold as applied to SA:

SA = foldµT. T→α(λx : µT. T → α. (unfold x) x)
Ω = (unfold SA) SA
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We can prove that Ω can be typed as any type α by first proving that SA can be typed as µT. T → α.
Here is the derivation:

{x : µT. T → α} � x : µT. T → α
{x : µT. T → α} � (unfold x) : (µT. T → α)→ α {x : µT. T → α} � x : µT. T → α

{x : µT. T → α} � ( (unfold x) x) ) : α
∅ � (λx : µT. T → α. (unfold x) x) ) : (µT. T → α)→ α

∅ � foldµT. T→α(λx : µT. T → α. (unfold x) x) : µT. T → α

Now we prove that Ω : α:
∅ � SA : µT. T → α

∅ � (unfold SA) : (µT. T → α)→ α ∅ � SA : µT. T → α
∅ � (unfold SA ) SA : α

It is perhaps surprising that Ω can be given any type α. However, this is okay because nontermination
is allowed by any type α.

Another example is Nat ≡ µN. 1 +N

0 ≡ inl(#u) = foldNat inl(#u)
1 ≡ foldNatinr(0)
...

succ ≡ λn : Nat. foldNat(inr(n))

Thus, although integers are convenient, in principle we don’t need to have them baked into our type
system if we have recursive types!
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